A multinuclear NMR study of the active site of an endoglucanase from a strain of Bacillus. Use of Trp residues as structural probes. (73/5574)

In the hydrolytic reaction catalyzed by an endoglucanase from a Bacillus strain (endoglucanase K), 2 of 12 Trp residues, Trp174 and Trp243, are responsible for binding of the substrate and/or for the catalysis (Kawaminami, S., Ozaki, K., Sumitomo, N., Hayashi, Y., Ito, S., Shimada, I., and Arata, Y. (1994) J. Biol. Chem. 269, 28752-28756). Here we report results of a stable isotope-aided NMR analysis of the active site of endoglucanase K, using Trp174 and Trp243 as structural probes. Hydrogen-deuterium exchange experiments performed for the NH protons of main and side chains of Trp residues revealed that Trp174 and Trp243 are located in the hydrophilic and hydrophobic microenvironments in the active site, respectively. We also carried out pH titration experiments for indole C2 proton resonances of Trp residues and measured the pH dependence of specific activities for wild-type endoglucanase K and its mutants in which Glu or Asp residues are replaced with their respective amide forms. On the basis of the results obtained from the present study, we conclude that (a) Glu130 and Asp191, which are in spatial proximity to Trp174 and Trp243 in the active site, play a crucial role in the enzymatic activity; (b) Glu130 and Asp191 interact with each other in the active site, leading to an increase in the pKa values to 5.5 for both amino acid residues; and (c) the pKa values of Glu130 and Asp191 would lead to an unusually narrow pH-activity profile of the endoglucanase K.  (+info)

Conformational changes in guanylyl cyclase-activating protein 1 (GCAP1) and its tryptophan mutants as a function of calcium concentration. (74/5574)

Guanylyl cyclase-activating proteins (GCAPs are 23-kDa Ca2+-binding proteins belonging to the calmodulin superfamily. Ca2+-free GCAPs are responsible for activation of photoreceptor guanylyl cyclase during light adaptation. In this study, we characterized GCAP1 mutants in which three endogenous nonessential Trp residues were replaced by Phe residues, eliminating intrinsic fluorescence. Subsequently, hydrophobic amino acids adjacent to each of the three functional Ca2+-binding loops were replaced by reporter Trp residues. Using fluorescence spectroscopy and biochemical assays, we found that binding of Ca2+ to GCAP1 causes a major conformational change especially in the region around the EF3-hand motif. This transition of GCAP1 from an activator to an inhibitor of GC requires an activation energy Ea = 9.3 kcal/mol. When Tyr99 adjacent to the EF3-hand motif was replaced by Cys, a mutation linked to autosomal dominant cone dystrophy in humans, Cys99 is unable to stabilize the inactive GCAP1-Ca2+ complex. Stopped-flow kinetic measurements indicated that GCAP1 rapidly loses its bound Ca2+ (k-1 = 72 s-1 at 37 degrees C) and was estimated to associate with Ca2+ at a rate (k1 > 2 x 10(8) M-1 s-1) close to the diffusion limit. Thus, GCAP1 displays thermodynamic and kinetic properties that are compatible with its involvement early in the phototransduction response.  (+info)

Residues in the alphaH and alphaI helices of the HIV-1 reverse transcriptase thumb subdomain required for the specificity of RNase H-catalyzed removal of the polypurine tract primer. (75/5574)

During retrovirus replication, reverse transcriptase (RT) must specifically interact with the polypurine tract (PPT) to generate and subsequently remove the RNA primer for plus-strand DNA synthesis. We have investigated the role that human immunodeficiency virus-1 RT residues in the alphaH and alphaI helices in the thumb subdomain play in specific RNase H cleavage at the 3'-end of the PPT; an in vitro assay modeling the primer removal step was used. Analysis of alanine-scanning mutants revealed that a subgroup exhibits an unusual phenotype in which the PPT is cleaved up to seven bases from its 3'-end. Further analysis of alphaH mutants (G262A, K263A, N265A, and W266A) with changes in residues in or near a structural motif known as the minor groove binding track showed that the RNase H activity of these mutants is more dramatically affected with PPT substrates than with non-PPT substrates. Vertical scan mutants at position 266 were all defective in specific RNase H cleavage, consistent with conservation of tryptophan at this position among lentiviral RTs. Our results indicate that residues in the thumb subdomain and the minor groove binding track in particular, are crucial for unique interactions between RT and the PPT required for correct positioning and precise RNase H cleavage.  (+info)

Interferon regulatory factor 1 tryptophan 11 to arginine point mutation abolishes DNA binding. (76/5574)

Interferon regulatory factor-1 (IRF-1) is a transcriptional activator of genes induced by a variety of cytokines and growth factors. Defects in IRF-1 occur frequently in human cancers and may contribute to tumorigenesis. The IRF family of transcription factors share invariant tryptophan residues that have been proposed to function by orienting the DNA contacting residues of IRF-1 with the DNA core sequence of the IRF element. Here we describe a point mutation in IRF-1 that converts the tryptophan at codon 11 to arginine (W11R). The IRF-1 (W11R) mutation abolishes IRF-1 DNA binding and transactivating activities demonstrating the critical role of this invariant tryptophan in IRF-1 function.  (+info)

Second-site reversion of a human immunodeficiency virus type 1 reverse transcriptase mutant that restores enzyme function and replication capacity. (77/5574)

Nonconservative substitutions for Tyr-115 in the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) lead to enzymes displaying lower affinity for deoxynucleoside triphosphates (dNTPs) (A. M. Martin-Hernandez, E. Domingo, and L. Menendez-Arias, EMBO J. 15:4434-4442, 1996). Several mutations at this position (Y115W, Y115L, Y115A, and Y115D) were introduced in an infectious HIV-1 clone, and the replicative capacity of the mutant viruses was monitored. Y115W was the only mutant able to replicate in MT-4 cells, albeit very poorly. Nucleotide sequence analysis of the progeny virus recovered from supernatants of four independent transfection experiments showed that the Y115W mutation was maintained. However, in all cases an additional substitution in the primer grip of the RT (M230I) emerged when the virus increased its replication capacity. Using recombinant HIV-1 RT, we demonstrate that M230I mitigates the polymerase activity defect of the Y115W mutant, by increasing the dNTP binding affinity of the enzyme. The second-site suppressor effects observed were mediated by mutations in the 66-kDa subunit of the RT, as demonstrated with chimeric heterodimers. Examination of available crystal structures of HIV-1 RT suggests a possible mechanism for restoration of enzyme activity by the second-site revertant.  (+info)

Structure and stability of recombinant protein depend on the extra N-terminal methionine residue: S6 permutein from direct and fusion expression systems. (78/5574)

Two permuted variants of S6 ribosomal protein were obtained in direct and fusion expression systems, respectively. The product of direct expression contained the extra N-terminal methionine residue. The structural properties and conformational stability of these permuteins were compared using 1-D (1)H-NMR, circular dichroism, intrinsic fluorescence, differential scanning calorimetry and resistance to urea-induced unfolding. A pronounced difference in all the parameters studied has been demonstrated. This means that the structure of recombinant protein can be sensitive to peculiarities of the expression and purification procedures, leading particularly to the presence or absence of the Met at the first position in the target protein sequence.  (+info)

Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. (79/5574)

Specific interactions of membrane proteins with the membrane interfacial region potentially define protein position with respect to the lipid environment. We investigated the proposed roles of tryptophan and lysine side chains as "anchoring" residues of transmembrane proteins. Model systems were employed, consisting of phosphatidylcholine lipids and hydrophobic alpha-helical peptides, flanked either by tryptophans or lysines. Peptides were incorporated in bilayers of different thickness, and effects on lipid structure were analyzed. Induction of nonbilayer phases and also increases in bilayer thickness were observed that could be explained by a tendency of Trp as well as Lys residues to maintain interactions with the interfacial region. However, effects of the two peptides were remarkably different, indicating affinities of Trp and Lys for different sites at the interface. Our data support a model in which the Trp side chain has a specific affinity for a well defined site near the lipid carbonyl region, while the lysine side chain prefers to be located closer to the aqueous phase, near the lipid phosphate group. The information obtained in this study may further our understanding of the architecture of transmembrane proteins and may prove useful for refining prediction methods for transmembrane segments.  (+info)

An allele of COL9A2 associated with intervertebral disc disease. (80/5574)

Intervertebral disc disease is one of the most common musculoskeletal disorders. A number of environmental and anthropometric risk factors may contribute to it, and recent reports have suggested the importance of genetic factors as well. The COL9A2 gene, which codes for one of the polypeptide chains of collagen IX that is expressed in the intervertebral disc, was screened for sequence variations in individuals with intervertebral disc disease. The analysis identified a putative disease-causing sequence variation that converted a codon for glutamine to one for tryptophan in six out of the 157 individuals but in none of 174 controls. The tryptophan allele cosegregated with the disease phenotype in the four families studied, giving a lod score (logarithm of odds ratio) for linkage of 4.5, and subsequent linkage disequilibrium analysis conditional on linkage gave an additional lod score of 7.1.  (+info)