The antigenicity of tobacco mosaic virus. (1/110)

The antigenic properties of the tobacco mosaic virus (TMV) have been studied extensively for more than 50 years. Distinct antigenic determinants called neotopes and cryptotopes have been identified at the surface of intact virions and dissociated coat protein subunits, respectively, indicating that the quaternary structure of the virus influences the antigenic properties. A correlation has been found to exist between the location of seven to ten residue-long continuous epitopes in the TMV coat protein and the degree of segmental mobility along the polypeptide chain. Immunoelectron microscopy, using antibodies specific for the bottom surface of the protein subunit, showed that these antibodies reacted with both ends of the stacked-disk aggregates of viral protein. This finding indicates that the stacked disks are bipolar and cannot be converted directly into helical viral rods as has been previously assumed. TMV epitopes have been mapped at the surface of coat protein subunits using biosensor technology. The ability of certain monoclonal antibodies to block the cotranslational disassembly of virions during the infection process was found to be linked to the precise location of their complementary epitopes and not to their binding affinity. Such blocking antibodies, which act by sterically preventing the interaction between virions and ribosomes may, when expressed in plants, be useful for controlling virus infection.  (+info)

Evolution and origins of tobamoviruses. (2/110)

More than a dozen tobamoviruses are known. In nature, each species probably survives by moving between several closely related host species. Each infected plant contains a population of variants, but in most host populations the tobamovirus population is stable. The phylogenetic relationships of tobamovirus species broadly correlate with those of their angiosperm hosts. The simplest explanation for this correlation is that they have coevolved with the angiosperms, and hence, like them, are about 120-140 million years old. Gene sequence differences between species also indicate that the tobamoviruses are an ancient genus. Their gene sequences, and the protein motifs they encode, link them to tobraviruses, hordeiviruses and soil-borne wheat mosaic virus, more distantly to the tricornaviruses, and even to hepatitis virus E and other furoviruses, rubiviruses and alphaviruses. Their progenitors may have been associated with charophycean algae, and perhaps also plasmodiophoromycete fungi.  (+info)

Phosphorylation and/or presence of serine 37 in the movement protein of tomato mosaic tobamovirus is essential for intracellular localization and stability in vivo. (3/110)

The P30 movement protein (MP) of tomato mosaic tobamovirus (ToMV) is synthesized in the early stages of infection and is phosphorylated in vivo. Here, we determined that serine 37 and serine 238 in the ToMV MP are sites of phosphorylation. MP mutants in which serine was replaced by alanine at positions 37 and 238 (LQ37A238A) or at position 37 only (LQ37A) were not phosphorylated, and mutant viruses did not infect tobacco or tomato plants. By contrast, mutation of serine 238 to alanine did not affect the infectivity of the virus (LQ238A). To investigate the subcellular localization of mutant MPs, we constructed viruses that expressed each mutant MP fused with the green fluorescent protein (GFP) of Aequorea victoria. Wild-type and mutant LQ238A MP fusion proteins showed distinct temporally regulated patterns of MP-GFP localization in protoplasts and formation of fluorescent ring-shaped infection sites on Nicotiana benthamiana. However mutant virus LQ37A MP-GFP did not show a distinct pattern of localization or formation of fluorescent rings. Pulse-chase experiments revealed that MP produced by mutant virus LQ37A was less stable than wild-type and LQ238A MPs. MP which contained threonine at position 37 was phosphorylated, but the stability of the MP in vivo was very low. These studies suggest that the presence of serine at position 37 or phosphorylation of serine 37 is essential for intracellular localization and stability of the MP, which is necessary for the protein to function.  (+info)

Internal initiation of translation directed by the 5'-untranslated region of the tobamovirus subgenomic RNA I(2). (4/110)

Previously we reported that, unlike RNA of typical tobamoviruses, the translation of the coat protein (CP) gene of a crucifer-infecting tobamovirus (crTMV) in vitro occurred by an internal ribosome entry mechanism mediated by the 148-nt region that contained an internal ribosome entry site (IRES(CP,148)(CR)). The equivalent 148-nt sequence from TMV U1 RNA (U1(CP,148)(SP)) was incapable of promoting internal initiation. In the present work, we have found that the 228-nt region upstream of the movement protein (MP) gene of crTMV RNA (IRES(MP,228)(CR)) contained an IRES element that directed in vitro translation of the 3'-proximal reporter genes from chimeric dicistronic transcripts. Surprisingly, the equivalent 228-nt sequence upstream from the MP gene of TMV U1 directed translation of the downstream gene of a dicistronic transcripts as well. Consequently this sequence was termed IRES(MP,228)(U1). It was shown that IRES(MP,228)(CR), IRES(MP,228)(U1), and IRES(CP,148)(CR) could mediate expression of the 3'-proximal GUS gene from dicistronic 35S promoter-based constructs in vivo in experiments on transfection of tobacco protoplasts and particle bombardment of Nicotiana benthamiana leaves. The results indicated that an IRES element was located within the 75-nt region upstream of MP gene (IRES(MP,75)), which corresponded closely to the length of the 5'UTR of TMV subgenomic RNA (sgRNA) I(2). The RNA transcripts structurally equivalent to I(2) sgRNAs of TMV U1 and crTMV, but containing a hairpin structure (H) immediately upstream of IRES(MP,75) (HIRES(MP), (75)(CR)-MP-CP-3'UTR; HIRES(MP,75)(U1)-MP-CP-3'UTR), were able to express the MP gene in vitro. The capacity of HIRES(MP,75)(CR) sequence for mediating internal translation of the 3'-proximal GUS gene in vivo, in tobacco protoplasts, was demonstrated. We suggested that expression of the MP gene from I(2) sgRNAs might proceed via internal ribosome entry pathway mediated by IRES(MP) element contained in the 75-nt 5'UTR. Our results admit that a ribosome scanning mechanism of the MP gene expression from I(2) sgRNA operates concurrently.  (+info)

Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. (5/110)

A previously undescribed caulimo-like virus was identified in the hybrid tobacco species Nicotiana edwardsonii, and was named tobacco vein clearing virus (TVCV) after the symptoms associated with its occurrence in this plant. The virions of TVCV are 50 nm in diameter and are composed of a 45 kDa capsid protein and a 7767 bp dsDNA genome. Each strand of the genome is interrupted by a site-specific discontinuity. In genome sequence and arrangement of ORFs TVCV was most similar to cassava vein mosaic virus, indicating that TVCV is a pararetrovirus. No serological relationship was detected between TVCV and any other caulimoviruses, including petunia vein clearing virus, which has similar biological properties. In N. edwardsonii TVCV was seed-transmitted to 100% of progeny plants, but was not transmitted by mechanical inoculation, grafting or Myzus persicae to any of seven other Nicotiana spp. Genomic DNA of TVCV hybridized to genomic DNA of N. edwardsonii and of N. glutinosa, its male parent, but not to genomic DNA of N. clevelandii, the female parent. TVCV has 78% sequence identity with pararetrovirus-like sequences that are present in high copy number in the N. tabacum genome, and TVCV genomic DNA hybridized to genomic DNA of N. tabacum and N. rustica. These observations suggest that the episomal form of TVCV may arise from integrated pararetroviral elements present in N. edwardsonii, that these integrants were inherited from the male parent N. glutinosa, and that these elements are related but not identical to pararetroviral elements occurring in other Nicotiana spp.  (+info)

Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. (6/110)

Posttranscriptional gene silencing (PTGS) in plants resuits from the degradation of mRNAs and shows phenomenological similarities with quelling in fungi and RNAi in animals. Here, we report the isolation of sgs2 and sgs3 Arabidopsis mutants impaired in PTGS. We establish a mechanistic link between PTGS, quelling, and RNAi since the Arabidopsis SGS2 protein is similar to an RNA-dependent RNA polymerase like N. crassa QDE-1, controlling quelling, and C. elegans EGO-1, controlling RNAi. In contrast, SGS3 shows no significant similarity with any known or putative protein, thus defining a specific step of PTGS in plants. Both sgs2 and sgs3 mutants show enhanced susceptibility to virus, definitively proving that PTGS is an antiviral defense mechanism that can also target transgene RNA for degradation.  (+info)

In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase. (7/110)

The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.  (+info)

TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. (8/110)

Host-encoded factors play an important role in virus multiplication, acting in concert with virus-encoded factors. However, information regarding the host factors involved in this process is limited. Here we report the map-based cloning of an Arabidopsis thaliana gene, TOM1, which is necessary for the efficient multiplication of tobamoviruses, positive-strand RNA viruses infecting a wide variety of plants. The TOM1 mRNA is suggested to encode a 291-aa polypeptide that is predicted to be a multipass transmembrane protein. The Sos recruitment assay supported the hypothesis that TOM1 is associated with membranes, and in addition, that TOM1 interacts with the helicase domain of tobamovirus-encoded replication proteins. Taken into account that the tobamovirus replication complex is associated with membranes, we propose that TOM1 participates in the in vivo formation of the replication complex by serving as a membrane anchor.  (+info)