Acute renal failure caused by nephrotoxins. (1/6121)

Renal micropuncture studies have greatly changed our views on the pathophysiology of acute renal failure caused by nephrotoxins. Formerly, this type of renal insufficiency was attributed to a direct effect of the nephrotoxins on tubule epithelial permeability. According to that theory, glomerular filtration was not greatly diminished, the filtrate formed being absorbed almost quantitatively and nonselectively across damaged tubule epithelium. Studies in a wide variety of rat models have now shown glomerular filtration to be reduced to a level which will inevitably cause renal failure in and of itself. Passive backflow of filtrate across tubular epithelium is either of minor degree or nonexistent even in models where frank tubular necrosis has occurred. This failure of filtration cannot be attributed to tubular obstruction since proximal tubule pressure is distinctly subnormal in most models studied. Instead, filtration failure appears best attributed to intrarenal hemodynamic alterations. While certain facts tend to incriminate the renin-angiotensin system as the cause of the hemodynamic aberrations, others argue to the contrary. The issue is underactive investigation.  (+info)

Renal function tests: what do they mean? A review of renal anatomy, biochemistry, and physiology. (2/6121)

Renal physiology, biochemistry, and anatomy are reviewed. For the most part, those aspects of these disciplines will be discussed which relate directly to the question of the evaluation of nephrotoxicity. In addition, emphasis is placed on those procedures and techniques which are useful in the evaluation of nephrotoxicity. A detailed discussion of histological and anatomical considerations is not given, since this is probably the least useful criterion for evaluation of renal damage. This information is intended as background for the remainder of the symposium which will be directed toward an understanding of specific nephrotoxicity phenomena.  (+info)

NaCl-induced renal vasoconstriction in salt-sensitive African Americans: antipressor and hemodynamic effects of potassium bicarbonate. (3/6121)

In 16 African Americans (blacks, 14 men, 2 women) with average admission mean arterial pressure (MAP, mm Hg) 99.9+/-3.5 (mean+/-SEM), we investigated whether NaCl-induced renal vasoconstriction attends salt sensitivity and, if so, whether supplemental KHCO3 ameliorates both conditions. Throughout a 3-week period under controlled metabolic conditions, all subjects ate diets containing 15 mmol NaCl and 30 mmol potassium (K+) (per 70 kg body wt [BW] per day). Throughout weeks 2 and 3, NaCl was loaded to 250 mmol/d; throughout week 3, dietary K+ was supplemented to 170 mmol/d (KHCO3). On the last day of each study week, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) using renal clearances of PAH and inulin. Ten subjects were salt sensitive (SS) (DeltaMAP >+5%) and 6 salt resistant (SR). In NaCl-loaded SS but not SR subjects, RBF (mL/min/1.73 m2) decreased from 920+/-75 to 828+/-46 (P<0.05); filtration fraction (FF, %) increased from 19. 4+/- to 21.4 (P<0.001); and renal vascular resistance (RVR) (10(3)xmm Hg/[mL/min]) increased from 101+/-8 to 131+/-10 (P<0.001). In all subjects combined, DeltaMAP varied inversely with DeltaRBF (r =-0.57, P=0.02) and directly with DeltaRVR (r = 0.65, P=0.006) and DeltaFF (r = 0.59, P=0.03), but not with MAP before NaCl loading. When supplemental KHCO3 abolished the pressor effect of NaCl in SS subjects, RBF was unaffected but GFR and FF decreased. The results show that in marginally K+-deficient blacks (1) NaCl-induced renal vasoconstrictive dysfunction attends salt sensitivity; (2) the dysfunction varies in extent directly with the NaCl-induced increase in blood pressure (BP); and (3) is complexly affected by supplemented KHCO3, GFR and FF decreasing but RBF not changing. In blacks, NaCl-induced renal vasoconstriction may be a pathogenetic event in salt sensitivity.  (+info)

Recovery following relief of unilateral ureteral obstruction in the neonatal rat. (4/6121)

BACKGROUND: Obstructive nephropathy is a primary cause of renal insufficiency in infants and children. This study was designed to distinguish the reversible and irreversible cellular consequences of temporary unilateral ureteral obstruction (UUO) on the developing kidney. METHODS: Rats were subjected to UUO or sham operation in the first 48 hours of life, and the obstruction was removed five days later (or was left in place). Kidneys were removed for study 14 or 28 days later. In additional groups, kidneys were removed at the end of five days of obstruction. Immunoreactive distribution of renin was determined in arterioles, and the distribution of epidermal growth factor, transforming growth factor-beta1, clusterin, vimentin, and alpha-smooth muscle actin was determined in tubules and/or interstitium. The number of glomeruli, glomerular maturation, tubular atrophy, and interstitial collagen deposition was determined by morphometry. Renal cellular proliferation and apoptosis were measured by proliferating cell nuclear antigen and the TdT uridine-nick-end-label technique, respectively. The glomerular filtration rate was measured by inulin clearance. RESULTS: Renal microvascular renin maintained a fetal distribution with persistent UUO; this was partially reversed by the relief of obstruction. Although glomerular maturation was also delayed and glomerular volume was reduced by UUO, the relief of obstruction prevented the reduction in glomerular volume. Although relief of obstruction did not reverse a 40% reduction in the number of nephrons, the glomerular filtration rate of the postobstructed kidney was normal. The relief of obstruction did not improve tubular cell proliferation and only partially reduced apoptosis induced by UUO. This was associated with a persistent reduction in the tubular epidermal growth factor. In addition, the relief of obstruction reduced but did not normalize tubular expression of transforming growth factor-beta1, clusterin, and vimentin, all of which are evidence of persistent tubular injury. The relief of obstruction significantly reduced interstitial fibrosis and expression of alpha-smooth muscle actin by interstitial fibroblasts, but not to normal levels. CONCLUSIONS: The relief of obstruction in the neonatal rat attenuates, but does not reverse, renal vascular, glomerular, tubular, and interstitial injury resulting from five days of UUO. Hyperfiltration by remaining nephrons and residual tubulointerstitial injury in the postobstructed kidney are likely to lead to deterioration of renal function later in life.  (+info)

Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. (5/6121)

BACKGROUND: The plasma concentrations of total homocysteine (tHcy) and total cysteine (tCys) are determined by intracellular metabolism and by renal plasma clearance, and we hypothesized that glomerular filtration is a major determinant of plasma tHcy and tCys. We studied the relationships between the glomerular filtration rate (GFR) and plasma tHcy and tCys in populations of diabetic patients with particularly wide ranges of GFR. METHODS: We measured GFR, urine albumin excretion rate (UAER), plasma tHcy, tCys, methionine, vitamin B12, folate, C-peptide, and routine parameters in 50 insulin-dependent diabetes mellitus (IDDM) and 30 non-insulin-dependent diabetes mellitus (NIDDM) patients. All patients underwent intensive insulin treatment and had a serum creatinine concentration below 115 micromol/liter. RESULTS: Mean plasma tHcy in diabetic patients (0.1 micromol/liter) was lower than in normal persons (11.1 micromol/liter, P = 0.0014). Mean plasma tCys in diabetic patients (266.1 micromol/liter) was also lower than in normal persons (281.9 micromol/liter, P = 0.0005). Seventy-three percent of the diabetic patients had relative hyperfiltration. Plasma tHcy and tCys were closely and independently associated with GFR, serum folate, and serum B12. However, plasma tHcy was not independently associated with any of the 22 other variables tested, including age, serum creatinine concentration, UAER, total daily insulin dose, and glycemic control. CONCLUSIONS: Glomerular filtration rate is an independent determinant of plasma tHcy and tCys concentrations, and GFR is rate limiting for renal clearance of both homocysteine and cysteine in diabetic patients without overt nephropathy. Declining GFR explains the age-related increase in plasma tHcy, and hyperfiltration explains the lower than normal mean plasma tHcy and tCys concentrations in populations of diabetic patients.  (+info)

Acute haemodynamic and proteinuric effects of prednisolone in patients with a nephrotic syndrome. (6/6121)

BACKGROUND: Administration of prednisolone causes an abrupt rise in proteinuria in patients with a nephrotic syndrome. METHODS: To clarify the mechanisms responsible for this increase in proteinuria we have performed a placebo controlled study in 26 patients with a nephrotic syndrome. Systemic and renal haemodynamics and urinary protein excretion were measured after prednisolone and after placebo. RESULTS: After i.v. administration of 125-150 mg prednisolone total proteinuria increased from 6.66+/-4.42 to 9.37+/-6.07 mg/min (P<0.001). By analysing the excretion of proteins with different charge and weight (albumin, transferrin, IgG, IgG4 and beta2-microglobulin) it became apparent that the increase of proteinuria was the result of a change in size selectivity rather than a change in glomerular charge selectivity or tubular protein reabsorption. Glomerular filtration rate rose from 83+/-34 ml to 95+/-43 ml/min (P<0.001) after 5 h, whereas effective renal plasma flow and endogenous creatinine clearance remained unchanged. As a result filtration fraction was increased, compatible with an increased glomerular pressure, which probably contributes to the size selectivity changes. Since corticosteroids affect both the renin-angiotensin system and renal prostaglandins, we have evaluated the effects of prednisolone on proteinuria after pretreatment with 3 months of the angiotensin-converting enzyme inhibitor lisinopril or after 2 weeks of the prostaglandin synthesis inhibitor indomethacin. Neither drug had any effect on prednisolone-induced increases of proteinuria. CONCLUSIONS: Prednisolone increases proteinuria by changing the size selective barrier of the glomerular capillary. Neither the renin-angiotensin axis nor prostaglandins seem to be involved in these effects of prednisolone on proteinuria.  (+info)

Antiproteinuric efficacy of verapamil in comparison to trandolapril in non-diabetic renal disease. (7/6121)

BACKGROUND: Non-dihydropyridine calcium antagonists such as verapamil are equally effective in reducing proteinuria as ACE inhibitors in hypertensive patients with diabetic nephropathy. To date it is unknown whether verapamil elucidates such an antiproteinuric capacity in non-diabetic renal disease. METHODS: We performed a double-blind, placebo-controlled, random cross-over study which compared the antiproteinuric effect of 6 weeks treatment with verapamil SR (360 mg) to that of the ACE inhibitor trandolapril (4 mg), and their fixed combination vera/tran (180 mg verapamil SR and 2 mg trandolapril) in 11 non-diabetic patients with proteinuria of 6.6 (5.1-8.8) g/day, a creatinine clearance of 87 (74-106) ml/min, and a 24-h blood pressure of 136/85 (126/76-157/96) mmHg at baseline. RESULTS: Twenty-four-hour mean arterial pressure did not change during verapamil, whereas both trandolapril and vera/tran induced a significant reduction in MAP. Verapamil showed no significant effects on renal haemodynamics. Trandolapril and vera/tran did not significantly change GFR, but ERPF increased and FF decreased during both treatments (P<0.05). The antiproteinuric response of verapamil was significantly less compared to that of trandolapril and vera/tran (-12% (-17/-1) vs -51% (-56/-25) and -41% (-50/-19) respectively). The blood pressure and antiproteinuric response during verapamil tended to be greater in hypertensive patients than in normotensive patients, although this difference was not significant. Baseline blood pressure was related to the change in blood pressure during verapamil (r = -0.70; P < 0.02). CONCLUSIONS: The antiproteinuric and antihypertensive response of verapamil is less than that of the ACE inhibitor trandolapril in patients with non-diabetic renal disease. In contrast to the antiproteinuric response of trandolapril, the antiproteinuric reponse of verapamil seems to be completely dependent from effective blood pressure reduction. The fixed combination of verapamil and ACE inhibition at half doses has similar effects as ACE inhibition at full dose.  (+info)

Hyperhomocyst(e)inaemia in children with chronic renal failure. (8/6121)

BACKGROUND: Hyperhomocyst(e)inaemia has been identified as a significant risk factor for the occurrence of atherosclerosis in adults with chronic renal failure. Because of its presumed direct toxic effect on the vascular wall, long-standing hyperhomocyst(e)inaemia in children with chronic renal failure might have an important influence on their risk of future development of atherosclerosis. Hitherto no data on hyperhomocyst(e)inaemia in children with renal failure have been published. METHODS: We investigated 16 children with chronic renal failure on conservative management, 12 children on haemodialysis and 17 children with a renal transplant. Age-matched controls were used for comparison. Plasma homocyst(e)ine levels after an overnight fast were determined by HPLC. Glomerular filtration rate was estimated by the Schwartz formula. RESULTS: Mean plasma homocyst(e)ine levels were 12.6 +/- 5.2 micromol/l in the conservatively managed group, 22.2 +/- 13.5 micromol/l in the haemodialysed group, 14.2 +/- 2.1 micromol/l in transplanted children with an estimated GFR > 60 ml/min/1.73 m2 and 17.5 +/- 5.1 micromol/l in transplanted children with a lower estimated GFR. In all groups homocyst(e)ine levels were significantly elevated as compared to controls. Homocyst(e)ine levels were significantly correlated with age and negatively correlated with estimated GFR and serum folate levels. CONCLUSIONS: Hyperhomocyst(e)inaemia is a feature of chronic renal failure in children as well as in adults. Elevated homocyst(e)ine levels can already be demonstrated in children with renal failure before end-stage renal disease has developed and persist after renal transplantation. Whether treatment of hyperhomocyst(e)inaemia in children with renal failure decreases the risk for future atherosclerosis remains to be proven.  (+info)