Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. (1/111)

1. The actions of opioid receptor agonists on synaptic transmission in substantia gelatinosa (SG) neurones in adult (6- to 10-week-old) rat spinal cord slices were examined by use of the blind whole-cell patch-clamp technique. 2. Both the mu-receptor agonist DAMGO (1 microM) and the delta-receptor agonist DPDPE (1 microM) reduced the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) which were monosynaptically evoked by stimulating Adelta afferent fibres. Both also decreased the frequency of miniature EPSCs without affecting their amplitude. 3. In contrast, the kappa-receptor agonist U-69593 (1 microM) had little effect on the evoked and miniature EPSCs. 4. The effects of DAMGO and DPDPE were not seen in the presence of the mu-receptor antagonist CTAP (1 microM) and the delta-receptor antagonist naltrindole (1 microM), respectively. 5. Neither DAMGO nor DPDPE at 1 microM affected the responses of SG neurones to bath-applied AMPA (10 microM). 6. Evoked and miniature inhibitory postsynaptic currents (IPSCs), mediated by either the GABAA or the glycine receptor, were unaffected by the mu-, delta- and kappa-receptor agonists. Similar results were also obtained in SG neurones in young adult (3- to 4-week-old) rat spinal cord slices. 7. These results indicate that opioids suppress excitatory but not inhibitory synaptic transmission, possibly through the activation of mu- and delta- but not kappa-receptors in adult rat spinal cord SG neurones; these actions are presynaptic in origin. Such an action of opioids may be a possible mechanism for the antinociception produced by their intrathecal administration.  (+info)

Responsiveness of rat substantia gelatinosa neurones to mechanical but not thermal stimuli revealed by in vivo patch-clamp recording. (2/111)

1. Synaptic responses of 46 substantia gelatinosa (SG) neurones in the spinal dorsal horn to cutaneous mechanical and/or thermal stimuli were investigated in an in vivo rat preparation with whole-cell patch-clamp recordings. The clamped neurones were identified as being in the SG based on either their morphological features by intrasomatic injection of biocytin or the depth of the neurones from the surface of the spinal cord. 2. In all SG neurones examined where spontaneous EPSCs occurred, pinch (noxious) and air (innocuous) stimuli applied to the ipsilateral hindlimb elicited a barrage of EPSCs (some of which initiated an action potential under current-clamp conditions), which subsided just after cessation of the stimuli without any residual slow current (or after-discharge). The spontaneous and evoked EPSCs were reversibly abolished by a non-N-methyl-D-aspartate (non-NMDA) receptor antagonist, CNQX (20 microM). 3. Noxious (>= 45 C) or innocuous (<= 40 C) thermal stimuli did not elicit any synaptic responses in all 18 SG neurones tested which were sensitive to mechanical stimuli. Noxious cold stimulation (<= 10 C) also failed to produce any responses (n = 6). 4. It is concluded that both noxious and innocuous mechanical information to SG neurones are transmitted primarily by activation of non-NMDA receptors, probably without any involvement of slow synaptic transmission, and that thermal information is conveyed to areas of the dorsal horn other than SG.  (+info)

Spinal laminae I-II neurons in rat recorded in vivo in whole cell, tight seal configuration: properties and opioid responses. (3/111)

Using the in vivo whole cell recording procedure described previously, we recorded 73 neurons in laminae I and II in the lumbar spinal cord of the rat. Input impedances averaged 332 MOmega, which indicated that prior sharp electrode recordings contained a significant current shunt. Characterization of the adequate stimuli from the excitatory hindlimb receptive field indicated that 39 of 73 neurons were nociceptive, 6 were innocuous cooling cells, 20 responded maximally to brush, and 8 cells were not excited by stimulation of the skin of the hindlimb. The locations of 15 neurons were marked with biocytin. Nociceptive neurons were mostly found in lamina I and outer II, cooling cells in lamina I, and innocuous mechanoreceptive cells were mostly found in inner II or in the overlying white matter. The mu-opioid agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-Enkephalin (DAMGO) hyperpolarized 7 of 19 tested neurons with a conductance increase. This hyperpolarization was reversed by naloxone in the neurons in which it was applied. DAMGO also decreased the frequency of spontaneous PSPs in 13 neurons, 7 of which were also hyperpolarized by DAMGO. Five of the seven hyperpolarized neurons were nociceptive, responding to both heat and mechanically noxious stimuli, whereas two responded to slow, innocuous brush. These results indicate that whole cell, tight seal recordings sample a similar population of lamina I and II neurons in the rat as those found with sharp electrode recordings in cat and monkey. They further indicate that DAMGO hyperpolarizes a subset of the nociceptive neurons that have input from both heat and mechanical nociceptors and that presynaptic DAMGO effects can be observed in nociceptive neurons that are not hyperpolarized by DAMGO.  (+info)

Synaptic reorganization in the substantia gelatinosa after peripheral nerve neuroma formation: aberrant innervation of lamina II neurons by Abeta afferents. (4/111)

Intracellular recording and extracellular field potential (FP) recordings were obtained from spinal cord dorsal horn neurons (laminae I-IV) in a rat transverse slice preparation with attached dorsal roots. To study changes in synaptic inputs after neuroma formation, the sciatic nerve was sectioned and ligated 3 weeks before in vitro electrophysiological analysis. Horseradish peroxidase labeling of dorsal root axons indicated that Abeta fibers sprouted into laminae I-II from deeper laminae after sciatic nerve section. FP recordings from dorsal horns of normal spinal cord slices revealed long-latency synaptic responses in lamina II and short-latency responses in lamina III. The latencies of synaptic FPs recorded in lamina II of the dorsal horn after sciatic nerve section were reduced. The majority of monosynaptic EPSPs recorded with intracellular microelectrodes from lamina II neurons in control slices were elicited by high-threshold nerve stimulation, whereas the majority of monosynaptic EPSPs recorded in lamina III were elicited by low-threshold nerve stimulation. After sciatic nerve section, 31 of 57 (54%) EPSPs recorded in lamina II were elicited by low-threshold stimulation. The majority of low-threshold EPSPs in lamina II neurons after axotomy displayed properties similar to low-threshold EPSPs in lamina III of control slices. These results indicate that reoccupation of lamina II synapses by sprouting Abeta fibers normally terminating in lamina III occurs after sciatic nerve neuroma formation. Furthermore, these observations indicate that the lamina II neurons receive inappropriate sensory information from low-threshold mechanoreceptor after sciatic nerve neuroma formation.  (+info)

Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 1): effects on axon terminals of GABAergic and glycinergic neurons. (5/111)

BACKGROUND: The activation of descending norepinephrine-containing fibers from the brain stem inhibits nociceptive transmission at the spinal level. How these descending noradrenergic pathways exert the analgesic effect is not understood fully. Membrane hyperpolarization of substantia gelatinosa (Rexed lamina II) neurons by the activation of alpha2 receptors may account for depression of pain transmission. In addition, it is possible that norepinephrine affects transmitter release in the substantia gelatinosa. METHODS: Adult male Sprague-Dawley rats (9-10 weeks of age, 250-300 g) were used in this study. Transverse spinal cord slices were cut from the isolated lumbar cord. The blind whole-cell patch-clamp technique was used to record from neurons. The effects of norepinephrine on the frequency and amplitude of miniature excitatory and inhibitory postsynaptic currents were evaluated. RESULTS: In the majority of substantia gelatinosa neurons tested, norepinephrine (10-100 microM) dose-dependently increased the frequency of gamma-aminobutyric acid (GABA)ergic and glycinergic miniature inhibitory postsynaptic currents; miniature excitatory postsynaptic currents were unaffected. This augmentation was mimicked by an alpha1-receptor agonist, phenylephrine (10-60 microM), and inhibited by alpha1-receptor antagonists prazosin (0.5 microM) and 2-(2,6-dimethoxyphenoxyethyl) amino-methyl-1,4-benzodioxane (0.5 microM). Neither postsynaptic responsiveness to exogenously applied GABA and glycine nor the kinetics of GABAergic and glycinergic inhibitory postsynaptic currents were affected by norepinephrine. CONCLUSION: These results suggest that norepinephrine enhances inhibitory synaptic transmission in the substantia gelatinosa through activation of presynaptic alpha1 receptors, thus providing a mechanism underlying the clinical use of alpha1 agonists with local anesthetics in spinal anesthesia.  (+info)

Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 2): effects on somatodendritic sites of GABAergic neurons. (6/111)

BACKGROUND: It has been reported previously that norepinephrine, when applied to the spinal cord dorsal horn, excites a subpopulation of dorsal horn neurons, presumably inhibitory interneurons. In the current study, the authors tested whether norepinephrine could activate inhibitory interneurons, specifically those that are "GABAergic." METHODS: A transverse slice was obtained from a segment of the lumbar spinal cord isolated from adult male Sprague-Dawley rats. Whole-cell patch-clamp recordings were made from substantia gelatinosa neurons using the blind patch-clamp technique. The effects of norepinephrine on spontaneous GABAergic inhibitory postsynaptic currents were studied. RESULTS: In the majority of substantia gelatinosa neurons tested, norepinephrine (10-60 microM) significantly increased both the frequency and the amplitude of GABAergic inhibitory postsynaptic currents. These increases were blocked by tetrodotoxin (1 microM). The effects of norepinephrine were mimicked by the alpha1-receptor agonist phenylephrine (10-80 microM) and inhibited by the alpha1-receptor-antagonist WB-4101 (0.5 microM). Primary-afferent-evoked polysynaptic excitatory postsynaptic potentials or excitatory postsynaptic currents in wide-dynamic-range neurons of the deep dorsal horn were also attenuated by phenylephrine (40 microM). CONCLUSION: The observations suggest that GABAergic interneurons possess somatodendritic alpha1 receptors, and activation of these receptors excites inhibitory interneurons. The alpha1 actions reported herein may contribute to the analgesic action of intrathecally administered phenylephrine.  (+info)

Actions of midazolam on GABAergic transmission in substantia gelatinosa neurons of adult rat spinal cord slices. (7/111)

BACKGROUND: Although intrathecal administration of midazolam has been found to produce analgesia, how midazolam exerts this effect is not understood fully at the neuronal level in the spinal cord. METHODS: The effects of midazolam on either electrically evoked or spontaneous inhibitory transmission and on a response to exogenous gamma-aminobutyric acid (GABA), a GABA(A)-receptor agonist, muscimol, or glycine were evaluated in substantia gelatinosa neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. RESULTS: Bath-applied midazolam (1 microM) prolonged the decay phase of evoked and miniature inhibitory postsynaptic currents (IPSCs), mediated by GABA(A) receptors, without a change in amplitudes, while not affecting glycine receptor-mediated miniature inhibitory postsynaptic currents in both the decay phase and the amplitude. Either GABA- or muscimol-induced currents were enhanced in amplitude by midazolam (0.1 microM) in a manner sensitive to a benzodiazepine receptor antagonist, flumazenil (1 microM); glycine currents were, however, unaltered by midazolam. CONCLUSIONS: Midazolam augmented both the duration of GABA-mediated synaptic current and the amplitude of GABA-induced current by acting on the GABA(A)-benzodiazepine receptor in substantia gelatinosa neurons; this would increase the inhibitory GABAergic transmission. This may be a possible mechanism for antinociception by midazolam.  (+info)

Distinct synaptic and extrasynaptic NMDA receptors identified in dorsal horn neurones of the adult rat spinal cord. (8/111)

1. Using patch-clamp recordings, properties of single-channel and synaptic currents mediated by N-methyl-D-aspartate receptors (NMDARs) were examin ed in substantia gelatinosa (SG) neurones of adult rat spinal cord slices. 2. In somatic outside-out patches, high- and low-conductance NMDAR channels were present. The low-conductance channels exhibited asymmetrical transitions between the main (44 pS) and subconductance (19 pS) levels, suggesting that they arise from NR2D subunit-containing receptors. The high-conductance channels (main conductance, 57 pS) were blocked by ifenprodil, an NR2B subunit selective blocker. 3. Ifenprodil had no effect on NMDA-EPSCs. The double-exponential decay time course and the apparent Kd for Mg2+ of NMDA-EPSCs suggested the expression of NR2A subunit-containing receptors at the synapse. 4. These results indicate that different NMDAR subtypes are expressed in subsynaptic and extrasynaptic regions of adult SG neurones, which may have differential roles in nociception.  (+info)