Pulsed Doppler ultrasonographic evaluation of portal blood flow in dogs with experimental portal vein branch ligation. (1/355)

Portal blood flow was measured using pulsed Doppler ultrasound in 6 dogs before and after left portal vein branch ligation. Mean portal vein blood flow velocity and mean portal vein blood flow were significantly reduced after ligation and the congestion index was increased (p < 0.01). Pulsed Doppler ultrasound studies provide valuable physiological information which may assist the clinician with the diagnosis of canine hepatic circulatory disorders.  (+info)

Resistance to insulin's acute direct hepatic effect in suppressing steady-state glucose production in individuals with type 2 diabetes. (2/355)

We and others have shown that insulin acutely suppresses glucose production in fasting nondiabetic humans and dogs, by both a direct hepatic effect and an indirect (extrahepatic) effect, and in diabetic dogs by an indirect effect alone. In type 2 diabetes, there is resistance to insulin's ability to suppress hepatic glucose production, but it has not previously been determined whether the resistance is primarily at the level of the hepatocyte or the peripheral tissues. To determine whether the diabetic state reduces the direct effect of insulin in humans, we studied nine patients with untreated type 2 diabetes who underwent three studies each, 4-6 weeks apart. 1) Portal study (POR): intravenous tolbutamide was infused for 3 h with calculation of pancreatic insulin secretion from peripheral plasma C-peptide. 2) Peripheral study (PER): equidose insulin was infused by peripheral vein. 3) Half-dose peripheral insulin study (1/2 PER): matched peripheral insulin levels with study 1. In all studies, glucose was clamped at euglycemia, glucose turnover was measured with the constant specific activity method, and 3-[3H]glucose was purified by high-performance liquid chromatography. Peripheral insulin was lower in POR versus PER but slightly higher in POR versus 1/2 PER, although most of the difference could be accounted for by higher proinsulin levels in POR (stimulated by tolbutamide). Calculated portal insulin was approximately 1.3-fold higher in POR versus PER and approximately 2.2-fold higher in POR versus 1/2 PER. In the final 30 min of the clamp, glucose production reached a lower steady-state level in PER than in POR (4.0 +/- 0.4 vs. 5.3 +/- 0.5 pmol(-1) x kg(-1) x min(-1), P < 0.05), despite the higher hepatic insulin level in POR. In contrast with our studies in nondiabetic individuals, glucose production was not more suppressed at steady state in POR versus 1/2 PER (5.3 +/- 0.4 micromol x kg(-1) x min(-1)), despite much higher hepatic insulin levels in POR. In conclusion, this is the first study in patients with type 2 diabetes to characterize insulin resistance to the acute direct suppressive effect of insulin on hepatic glucose production.  (+info)

Preserved arterial flow secures hepatic oxygenation during haemorrhage in the pig. (3/355)

1. This study examined the extent of liver perfusion and its oxygenation during progressive haemorrhage. We examined hepatic arterial flow and hepatic oxygenation following the reduced portal flow during haemorrhage in 18 pigs. The hepatic surface oxygenation was assessed by near-infrared spectroscopy and the hepatic metabolism of oxygen, lactate and catecholamines determined the adequacy of the hepatic flow. 2. Stepwise haemorrhage until circulatory collapse resulted in proportional reductions in cardiac output and in arterial, central venous and pulmonary wedge pressures. While heart rate increased, pulmonary arterial pressure remained stable. In addition, renal blood flow decreased, renal vascular resistance increased and there was elevated noradrenaline spill-over. Further, renal surface oxygenation was lowered from the onset of haemorrhage. 3. Similarly, the portal blood flow was reduced in response to haemorrhage, and, as for the renal flow, the reduced splanchnic blood flow was associated with an elevated noradrenaline spill-over. In contrast, hepatic arterial blood flow was only slightly reduced by haemorrhage, and surface oxygenation did not change. The hepatic oxygen uptake was maintained until the blood loss represented more than 30 % of the estimated blood volume. At 30 % reduced blood volume, hepatic catecholamine uptake was reduced, and the lactate uptake approached zero. 4. Subsequent reduction of cardiac output and portal blood flow elicited a selective dilatation of the hepatic arterial vascular bed. Due to this dilatation liver blood flow and hepatic cell oxygenation and metabolism were preserved prior to circulatory collapse.  (+info)

Blockade of hepatic nitric oxide synthase causes insulin resistance. (4/355)

The hypothesis was tested that insulin sensitivity, previously shown to depend on a functional hepatic parasympathetic reflex, was mediated by hepatic production of nitric oxide (NO). Insulin sensitivity was measured using the rapid insulin sensitivity test. N-nitro-L-arginine methyl ester (L-NAME, 2.5 and 5.0 mg/kg iv) and N-monomethyl-L-arginine (L-NMMA, 0.73 mg/kg), nitric oxide synthase (NOS) antagonists, caused insulin resistance in rats. Intraportal administration of L-NAME at a dose of 1.0 mg/kg significantly reduced the response to insulin (54.9 +/- 5.2%); however, administration of the same dose of L-NAME intravenously did not cause a significant decrease in insulin response. Intraportal, but not intravenous, administration of 3-morpholinosydnonimine (SIN-1, 5. 0 mg/kg), a NO donor, partially reversed the insulin resistance caused by L-NMMA. Intraportal administration of SIN-1 (10.0 mg/kg) completely restored insulin sensitivity after L-NMMA or surgical denervation of the liver. Insulin resistance produced by denervation was not further increased by NOS blockade. These results suggest that blockade of NOS causes peripheral insulin resistance secondary to blockade of the hepatic parasympathetic reflex release of hepatic insulin-sensitizing substance in response to insulin.  (+info)

Transcobalamin II synthesized in the intestinal villi facilitates transfer of cobalamin to the portal blood. (5/355)

This study was designed to identify the cellular component of the intestinal villus where transcobalamin II (TCII) is synthesized, because this protein provides an essential function in the intestinal absorption of vitamin B(12) (cobalamin, Cbl). When a segment of proximal or distal small intestine of the guinea pig is cultured in medium containing [(57)Co]Cbl, TCII-[(57)Co]Cbl appears within 15 min. Northern blot analysis of RNA from both proximal and distal small intestine identified the TCII transcript. In situ hybridization of the distal ileum with (35)S-labeled TCII antisense transcript localized grains predominantly in crypts and in the lower third and central core of the villi. Grains were also evident at the base of the enterocytes in close apposition with the vascular network, whereas few grains appeared in the apical region of the columnar cells. This study provides evidence that TCII is constitutively expressed in the intestinal villi where vascular endothelium is abundant. In the distal ileum, where the intrinsic factor (IF) receptor is expressed, after uptake of IF-Cbl and the subsequent binding of free Cbl to TCII synthesized in the villi, the TCII-Cbl complex enters the microcirculation and passes into the portal blood.  (+info)

The terminal hepatic microcirculation in the rat. (6/355)

The hepatic microcirculation was observed microscopically in the transilluminated liver of the rat. The portal and hepatic venous microvessels were classified into four orders according to their branching hierarchy, and the hepatic sinusoids into branching, direct and interconnecting types according to their topographic arrangements. The diameters of the various orders of microvessels and types of sinusoids were measured by serial photomicrography, and the velocity of the erythrocytes in these various microvessels and sinusoids by the dual-slit photometric technique. The microvascular volume flows were calculated from these data. In both portal and hepatic venous systems, the erythrocyte velocity and the volume flow significantly decreased in successive orders of the microvessels in apparent relation to the cross-sectional areas. The diameters of the three types of sinusoids did not significantly differ, but the velocity of the erythrocytes in the direct sinusoid was significantly faster than that in the branching sinusoid while that in the inter-connecting sinusoid fluctuated widely.  (+info)

Expression of metalloproteinases (MMP-1, MMP-2, and MMP-9) and their inhibitors (TIMP-1 and TIMP-2) in schistosomal portal fibrosis. (7/355)

Focal extracellular matrix degradation morphologically identified in human portal pipestem fibrosis due to Schistosoma mansoni did not express immunohistochemical reactivity for metalloproteinases (MMP-1, MMP-2, and MMP-9) and their inhibitors (TIMP-1 and TIMP-2). However, when active schistosomal periovular granulomas were present, a strong reactivity for MMP-1, MMP-2, TIMP-1, and TIMP-2 was observed. No reactivity was ever observed for MMP-9. However, the positive pattern of immunohistochemical expression was not seen in old fibrotic periovular granulomas, which were sometimes situated in other areas of the same microscopic section. Positive staining for MMPs and TIMPs was observed at the same time in hepatocytes and within the apical portion of bile duct epithelium. These findings are consistent with the concept that matrix degradation in recent and old fibroses, in addition to differing at the ultrastructural level, also differs in immunohistochemical expression of metalloproteinases and their inhibitors.  (+info)

Hepatic manifestations of familial patent ductus venosus in adults. (8/355)

BACKGROUND: The ductus venosus connects the umbilical vein to the inferior vena cava during fetal life and subsequently closes rapidly after birth. It is known as patent ductus venosus when it remains patent in adulthood. PATIENTS: A 43 year old man with a history of panhypopituitarism presented with recurrent bouts of pedal oedema associated with fatigue, hypoalbuminaemia, and elevated prothrombin time. An ultrasound examination of his abdomen with Doppler revealed notable attenuation of the main portal vein with diminished intrahepatic branches; a computed tomography scan with angiography revealed a large collateral vein within the liver consistent with a patent ductus venosus. Sequential liver biopsies showed a considerable reduction in the calibre and number of the portal veins. His younger brother, who was diagnosed with alcohol related cirrhosis, suffered from intermittent bouts of encephalopathy and was found to have the same vascular lesion. A third brother was found to have a patent ductus venosus as well as two large hepatic masses consistent with focal nodular hyperplasia. CONCLUSION: The syndrome of familial patent ductus venosus has only previously been described in three infant brothers who presented with hepatic encephalopathy and fatty degeneration of the liver. This report documents three brothers with a patent ductus venosus presenting in adulthood with different manifestations of liver disease. The presence of the same vascular anomaly in three brothers is highly suggestive of a recessive genetic trait with an anatomical manifestation of patent ductus venosus.  (+info)