Animal housing influences the response of bone to spaceflight in juvenile rats. (1/27)

The rat has been used extensively as an animal model to study the effects of spaceflight on bone metabolism. The results of these studies have been inconsistent. On some missions, bone formation at the periosteal bone surface of weight-bearing bones is impaired and on others it is not, suggesting that experimental conditions may be an important determinant of bone responsiveness to spaceflight. To determine whether animal housing can affect the response of bone to spaceflight, we studied young growing (juvenile) rats group housed in the animal enclosure module and singly housed in the research animal holding facility under otherwise identical flight conditions (Spacelab Life Science 1). Spaceflight reduced periosteal bone formation by 30% (P < 0.001) and bone mass by 7% in single-housed animals but had little or no effect on formation (-6%) or mass (-3%) in group-housed animals. Group housing reduced the response of bone to spaceflight by as much as 80%. The data suggest that housing can dramatically affect the skeletal response of juvenile rats to spaceflight. These observations explain many of the discrepancies in previous flight studies and emphasize the need to study more closely the effects of housing (physical-social interaction) on the response of bone to the weightlessness of spaceflight.  (+info)

Renal vasopressin receptor expression and function in rats following spaceflight. (2/27)

It has been suggested there is a decreased renal responsiveness to vasopressin following spaceflight and that this may be the mechanism for the increased urine flow that is observed following return to normal gravity. In the present study, we have therefore measured vasopressin receptor expression and activity in kidneys taken from rats 1 and 14 days following spaceflight of 15 days duration. Measurements of renal vasopressin V(2) and V(1a) receptor mRNA expression by quantitative RT-PCR demonstrated little difference at either 1 day or at 14 days following return from space. Evaluation of (3)H-labeled arginine vasopressin binding to membranes prepared from kidneys indicated that the majority of the vasopressin receptors were V(2) receptors. Furthermore, the data suggested that binding to vasopressin V(2) or V(1a) receptors was unaltered at 1 day and 14 days following spaceflight. Similarly, the ability of vasopressin to stimulate adenylate cyclase suggested no change in vasopressin V(2) receptor activity in these animals. These data suggest that, whatever changes in fluid and electrolyte metabolism are observed following spaceflight, they are not mediated by changes in vasopressin receptor number or vasopressin-induced stimulation of adenylate cyclase.  (+info)

Midodrine prevents orthostatic intolerance associated with simulated spaceflight. (3/27)

Many astronauts after being weightless in space become hypotensive and presyncopal when they assume an upright position. This phenomenon, known as orthostatic intolerance, may interfere with astronaut function during reentry and after spaceflight and may limit the ability of an astronaut to exit a landed spacecraft unaided during an emergency. Orthostatic intolerance is more pronounced after long-term spaceflight and is a major concern with respect to the extended flights expected aboard the International Space Station and for interplanetary exploration class missions, such as a human mission to Mars. Fully effective countermeasures to this problem have not yet been developed. To test the hypothesis that alpha-adrenergic stimulation might provide an effective countermeasure, we conducted a 16-day head-down-tilt bed-rest study (an analog of weightlessness) using normal human volunteers and administered the alpha(1)-agonist drug midodrine at the end of the bed-rest period. Midodrine was found to significantly ameliorate excessive decreases in blood pressure and presyncope during a provocative tilt test. We conclude that midodrine may be an effective countermeasure for the prevention of orthostatic intolerance following spaceflight.  (+info)

Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans. (4/27)

Adequate nutrition is critical during long-term spaceflight, as is the ability to easily monitor dietary intake. A comprehensive nutritional status assessment profile was designed for use before, during and after flight. It included assessment of both dietary intake and biochemical markers of nutritional status. A spaceflight food-frequency questionnaire (FFQ) was developed to evaluate intake of key nutrients during spaceflight. The nutritional status assessment protocol was evaluated during two ground-based closed-chamber studies (60 and 91 d; n = 4/study), and was implemented for two astronauts during 4-mo stays on the Mir space station. Ground-based studies indicated that the FFQ, administered daily or weekly, adequately estimated intake of key nutrients. Chamber subjects maintained prechamber energy intake and body weight. Astronauts tended to eat 40--50% of WHO-predicted energy requirements, and lost >10% of preflight body mass. Serum ferritin levels were lower after the chamber stays, despite adequate iron intake. Red blood cell folate concentrations were increased after the chamber studies. Vitamin D stores were decreased by > 40% on chamber egress and after spaceflight. Mir crew members had decreased levels of most nutritional indices, but these are difficult to interpret given the insufficient energy intake and loss of body mass. Spaceflight food systems can provide adequate intake of macronutrients, although, as expected, micronutrient intake is a concern for any closed or semiclosed food system. These data demonstrate the utility and importance of nutritional status assessment during spaceflight and of the FFQ during extended-duration spaceflight.  (+info)

Ecological cultivation ark (ECA) project--mutation and evolution of micro-organisms in space. (5/27)

Ecological cultivation capsules (ECC), that is a materially sealed microcosm. composed of primary producers, consumers and bacteria as a decomposer were developed in order to cultivate bacteria without any artificial operation for long duration more than 10 years in space. It is planned to be left on the space station to study the process that bacteria in MIR space station had acquired their resistance to cosmic ray radiation as well as ultra-violet light. As contrasted with the space experiment, bacteria are cultivating in the ECC on the ground to trace the changes of bacteria under the simulated radiation dose in Earth orbit.  (+info)

Physiological ecology of Mesozoic polar forests in a high CO2 environment. (6/27)

Fossils show that coniferous forests extended into polar regions during the Mesozoic, a time when models and independent paleo-CO2 indicators suggest that the atmospheric CO2 concentration was at least double that of the present day. Consequently, such polar forests would have experienced high CO2 interacting with an extreme variation in light. Here we describe an experiment investigating this plant-environment interaction for extant tree species that were important components of polar forests, and give results from the first year of treatment. Specifically, we tested the hypotheses that growth in elevated CO2 (1) stimulates photosynthesis; (2) reduces photoinhibition during the polar summer; and (3) reduces respiration of above- and below-ground plant organs. Our results indicate that CO2 fertilization generally does not affect photosynthesis under continuous daylight characteristic of the polar summer but does increase it when the period of illumination is shorter. Growth in elevated CO2 did not alter the potential for photoinhibition. CO2 enrichment significantly reduced leaf and root respiration rates by 50 and 25 %, respectively, in a range of evergreen taxa. Incorporating these observed CO2 effects into numerical simulations using a process-based model of coniferous forest growth indicates that a high paleo-CO2 concentration would have increased the productivity of Cretaceous conifer forests in northern Alaska. This results from decreased respiratory costs that more than compensate for the absence of high CO2-high temperature interactions during the polar summer. The longer-term effects of CO2 enrichment on seasonal changes in the above- and below-ground carbon balance of trees are discussed.  (+info)

Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection? (7/27)

Chronic exposure to increased force environments (+G) has pronounced effects on the circadian and homeostatic regulation of body temperature (T(b)), ambulatory activity (Act), heart rate, feeding, and adiposity. By using the Brn 3.1 knockout mouse, which lacks vestibular hair cells, we recently described a major role of the vestibular system in mediating some of these adaptive responses. The present study used the C57BL6JEi-het mouse strain (het), which lacks macular otoconia, to elucidate the contribution of specific vestibular receptors. In this study, eight het and eight WT mice were exposed to 2G for 8 weeks by means of chronic centrifugation. In addition, eight het and eight WT mice were maintained as 1G controls in similar conditions. Upon 2G exposure, the WT exhibited a decrease in T(b) and an attenuated T(b) circadian rhythm. Act means and rhythms also were attenuated. Body mass and food intake were significantly lower than the 1G controls. After 8 weeks, percent body fat was significantly lower in the WT mice (P < 0.0001). In contrast, the het mice did not exhibit a decrease in mean T(b) and only a slight decrease in T(b) circadian amplitude. het Act levels were attenuated similarly to the WT mice. Body mass and food intake were only slightly attenuated in the het mice, and percent body fat, after 8 weeks, was not different in the 2G het group. These results link the vestibular macular receptors with specific alterations in homeostatic and circadian regulation.  (+info)

Psychoactive drugs and pilot performance: a comparison of nicotine, donepezil, and alcohol effects. (8/27)

The cholinergic system plays a major role in cognitive abilities that are essential to piloting an aircraft: attention, learning, and memory. In previous studies, drugs that enhance the cholinergic system through different pharmacologic mechanisms have shown beneficial effects on cognition; but dissimilar cognitive measures were used and samples were not comparable. A comparison within the same cognitive tasks, within comparable samples appears desirable. Toward this aim, we compared effect sizes (ES) of performance-enhancing doses of nicotine (a nicotinic receptor agonist) and donepezil (an acetylcholinesterase inhibitor) as found in our prior work on pilot performance. We also compared cholinergic ES to those of performance-impairing doses of alcohol. In three randomized, placebo-controlled trials, we assessed the flight performance of aircraft pilots in a Frasca 141 simulator, testing I: the acute effects of nicotine gum 2 mg; II: the effects of administration of 5 mg donepezil/day for 30 days; and III: the acute and 8 h-carryover effects of alcohol after a target peak BAC of 0.10%. We calculated the ES of nicotine, donepezil, and alcohol on a flight summary score and on four flight component scores. Compared to placebo, nicotine and donepezil significantly improved, while alcohol significantly impaired overall flight performance: ES (nicotine)=0.80; ES (donepezil)=1.02; ES (alcohol acute)=-3.66; ES (alcohol 8 h)=-0.82. Both cholinergic drugs showed the largest effects on flight tasks requiring sustained visual attention. Although the two tested cholinergic drugs have different pharmacologic mechanisms, their effects on flight performance were similar in kind and size. The beneficial effects of the cholinergic drugs on overall flight performance were large and the absolute (ie nondirectional) sizes were about one-fourth of the absolute ES of acute alcohol intoxication and roughly the same as the absolute 8 h-carryover ES of alcohol.  (+info)