Space weathering on airless planetary bodies: clues from the lunar mineral hapkeite. (73/770)

Physical and chemical reactions occurring as a result of the high-velocity impacts of meteorites and micrometeorites and of cosmic rays and solar-wind particles are major causes of space weathering on airless planetary bodies, such as the Moon, Mercury, and asteroids. These weathering processes are responsible for the formation of their regolith and soil. We report here the natural occurrence of the mineral hapkeite, a Fe2Si phase, and other associated Fe-Si phases (iron-silicides) in a regolith breccia clast of a lunar highland meteorite. These Fe-Si phases are considered to be a direct product of impact-induced, vapor-phase deposition in the lunar soil, all part of space weathering. We have used an in situ synchrotron energy-dispersive, single-crystal x-ray diffraction technique to confirm the crystal structure of hapkeite as similar to the structure of synthetic Fe2Si. This mineral, hapkeite, is named after Bruce Hapke of the University of Pittsburgh, who predicted the presence and importance of vapor-deposited coatings on lunar soil grains some 30 years ago. We propose that this mineral and other Fe-Si phases are probably more common in the lunar regolith than previously thought and are directly related to the formation of vapor-deposited, nanophase elemental iron in the lunar soils.  (+info)

An on-chip thin film photodetector for the quantification of DNA probes and targets in microarrays. (74/770)

A flat microdevice which incorporates a thin-film amorphous silicon (a-Si:H) photodetector with an upper layer of functionalized SiO2 is used to quantify the density of both immobilized and hybridized DNA oligonucleotides labeled with a fluorophore. The device is based on the photoconductivity of hydrogenated amorphous silicon in a coplanar electrode configuration. Excitation, with near UV/blue light, of a single-stranded DNA molecule tagged with the fluorophore 1-(3-(succinimidyloxycarbonyl)benzyl)-4-(5-(4-methoxyphenyl)oxazol-2-yl) pyridinium bromide (PyMPO), results in the emission of visible light. The emitted light is then converted into an electrical signal in the photodetector, thus allowing the optoelectronic detection of the DNA molecules. The detection limit of the present device is of the order of 1 x 10(12) molecules/cm2 and is limited by the efficiency of the filtering of the excitation light. A surface density of 33.5 +/- 4.0 pmol/cm2 was measured for DNA covalently immobilized to the functionalized SiO2 thin film and a surface density of 3.7 +/- 1.5 pmol/cm2 was measured for the complementary DNA hybridized to the bound DNA. The detection concept explored can enable on-chip electronic data acquisition, improving both the speed and the reliability of DNA microarrays.  (+info)

A silicon early visual system as a model animal. (75/770)

Examples that show the transfer of our basic knowledge of brain function into practical electronic models are rare. Here we present a user-friendly silicon model of the early visual system that contributes to animal welfare. The silicon chip emulates the neurons in the visual system by using analog Very Large Scale Integration (aVLSI) circuits. It substitutes for a live animal in experiment design and lecture demonstrations. The neurons on this chip display properties that are central to biological vision: receptive fields, spike coding, adaptation, band-pass filtering, and complementary signaling. Unlike previous laboratory devices whose complexity was limited by the use of discrete components on printed circuit boards, this battery-powered chip is a self-contained patch of the visual system. The realistic responses of the chip's cells and the self-contained adjustment-free correct operation of the chip suggest the possibility of implementation of similar circuits for visual prosthetics.  (+info)

Protein adsorption on ex vivo catheters and polymers exposed to peritoneal dialysis effluent. (76/770)

BACKGROUND: Deposition of proteins on surfaces of medical devices has been recognized to putatively relate to the process of regulation of biomaterial-associated complications by attachment of fibrin clots, eukaryotic cells, and microbes. The molecules adsorb to a varying extent, depending not only on the physicochemical properties of the biomaterial, but also on the composition of the host fluid. OBJECTIVE: Adsorption of proteins on catheters exposed both ex vivo and in vitro to dialysate of patients on peritoneal dialysis (PD) was studied. METHODS: Peritoneal dialysis effluent was collected from 5 patients with end-stage renal disease on continuous ambulatory PD. Tenckhoff catheters were obtained from 16 patients. Deposition of proteins on excised Tenckhoff catheters and tubing of different materials exposed to PD effluent in vitro was studied using 125iodine-labeled antibodies. Adhesion of Staphylococcus aureus and Staphylococcus epidermidis strains was quantified on tubing exposed to PD effluent in vitro. RESULTS: The presence of albumin, transferrin, immunoglobulin G, fibrinogen, fibronectin, von Willebrand factor, vitronectin, and thrombospondin was determined at various concentrations in PD effluent. All proteins analyzed were detected on PD catheters removed from patients. The extent of protein deposition on Tenckhoff catheters exposed to PD effluent, in vitro, rapidly reached a plateau and remained constant, as it did on polyvinyl chloride and polyethylene tubing. Adhesion of staphylococci was enhanced on Tenckhoff catheters exposed to PD effluent compared to unused PD solution. CONCLUSIONS: The data identify surface exposed proteins that may serve as adhesion sites for microbes on peritoneal catheters indwelled in patients undergoing PD.  (+info)

Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current. (77/770)

The generation of rhythmic patterns by neuronal networks is a complex phenomenon, relying on the interaction of numerous intrinsic and synaptic currents, as well as modulatory agents. To investigate the functional contribution of an individual ionic current to rhythmic pattern generation in a network, we constructed a hybrid system composed of a silicon model neuron and a heart interneuron from the heartbeat timing network of the medicinal leech. When the model neuron and a heart interneuron are connected by inhibitory synapses, they produce rhythmic activity similar to that observed in the heartbeat network. We focused our studies on investigating the functional role of the hyperpolarization-activated inward current (I(h)) on the rhythmic bursts produced by the network. By introducing changes in both the model and the heart interneuron, we showed that I(h) determines both the period of rhythmic bursts and the balance of activity between the two sides of the network, because the amount and the activation/deactivation time constant of I(h) determines the length of time that a neuron spends in the inhibited phase of its burst cycle. Moreover, we demonstrated that the model neuron is an effective replacement for a heart interneuron and that changes made in the model can accurately mimic similar changes made in the living system. Finally, we used a previously developed mathematical model (Hill et al. 2001) of two mutually inhibitory interneurons to corroborate these findings. Our results demonstrated that this hybrid system technique is advantageous for investigating neuronal properties that are inaccessible with traditional techniques.  (+info)

Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. (78/770)

The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design.  (+info)

Development of casting investment preventing blackening of noble metal alloys part 3. Effect of reducing agent addition on the strength and expansion of the investments. (79/770)

Different reducing agents (B, Al, Si and Ti) were individually added to two gypsum-bonded investments to prepare investments preventing surface blackening of some noble cast alloys. The effect of different additive contents on green-body and burnout compressive strength, setting and thermal expansion of the investments were evaluated. The strength and expansion of the investments were changed by the additives. The compressive strength of Al-, Si- and Ti-added investments decreased with the increase of additive contents. The burnout strength of B-added investments significantly increased while green-body strength remained unchanged. The setting expansion of the B-added investments increased while those of the Al-, Si- and Ti-added investments decreased with the increase of additive contents. The thermal expansion of the Si- and Ti-added investments decreased, and that of the Al- and B-added investments remained unchanged. Further study is necessary to evaluate the effects of these additives on the accuracy of dental castings.  (+info)

Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye. (80/770)

The electrical sheet resistance between living cells grown on planar electronic contacts of semiconductors or metals is a crucial parameter for bioelectronic devices. It determines the strength of electrical signal transduction from cells to chips and from chips to cells. We measured the sheet resistance by applying AC voltage to oxidized silicon chips and by imaging the voltage change across the attached cell membrane with a fluorescent voltage-sensitive dye. The phase map of voltage change was fitted with a planar core-coat conductor model using the sheet resistance as a free parameter. For nerve cells from rat brain on polylysine as well as for HEK293 cells and MDCK cells on fibronectin we find a similar sheet resistance of 10 MOmega. Taking into account the independently measured distance of 50 nm between chip and membrane for these cells, we obtain a specific resistance of 50 Omegacm that is indistinguishable from bulk electrolyte. On the other hand, the sheet resistance for erythrocytes on polylysine is far higher, at approximately 1.5 GOmega. Considering the distance of 10 nm, the specific resistance in the narrow cleft is enhanced to 1500 Omegacm. We find this novel optical method to be a convenient tool to optimize the interface between cells and chips for bioelectronic devices.  (+info)