The virulence plasmid-encoded impCAB operon enhances survival and induced mutagenesis in Shigella flexneri after exposure to UV radiation. (1/922)

Upon exposure to UV radiation, Shigella flexneri SA100 displayed survival and mutation frequencies comparable to those of Escherichia coli AB1157, which contains a functional UmuDC error-prone DNA repair system. Survival of SA100 after UV irradiation was associated with the presence of the 220-kb virulence plasmid, pVP. This plasmid encodes homologues of ImpA and ImpB, which comprise an error-prone DNA repair system encoded on plasmid TP110 that was initially identified in Salmonella typhimurium, and ImpC, encoded upstream of ImpA and ImpB. Although the impB gene was present in representatives of all four species of Shigella, not all isolates tested contained the gene. Shigella isolates that lacked impB were more sensitive to UV radiation than isolates that contained impB. The nucleotide sequence of a 2.4-kb DNA fragment containing the imp operon from S. flexneri SA100 pVP was 96% identical to the imp operon from the plasmid TP110. An SA100 derivative with a mutation in the impB gene had reduced survival following UV irradiation and less UV-induced mutagenesis relative to the parental strain. We also found that S. flexneri contained a chromosomally encoded umuDC operon; however, the umuDC promoter was not induced by exposure to UV radiation. This suggests that the imp operon but not the umuDC operon contributes to survival and induced mutagenesis in S. flexneri following exposure to UV radiation.  (+info)

Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. (2/922)

In shigellosis, the network of cellular interactions mediated by a balance of pro- and anti-inflammatory cytokines or chemokines is clearly tipped toward acute destructive inflammation of intestinal tissues by the bacterial invader. This work has addressed the role played by interleukin-8 (IL-8) in a rabbit model of intestinal invasion by Shigella flexneri. IL-8, which is largely produced by the epithelial cells themselves, appears to be a major mediator of the recruitment of polymorphonuclear leukocytes (PMNs) to the subepithelial area and transmigration of these cells through the epithelial lining. Neutralization of IL-8 function by monoclonal antibody WS-4 caused a decrease in the amount of PMNs streaming through the lamina propria and the epithelium, thus significantly attenuating the severity of epithelial lesions in areas of bacterial invasion. These findings are in agreement with our previous work (31). In contrast to the PMNs, the bacteria displayed increased transepithelial translocation, as well as overgrowth in the lamina propria and increased passage into the mesenteric blood. By mediating eradication of bacteria at their epithelial entry site, although at the cost of severe epithelial destruction, IL-8 therefore appears to be a key chemokine in the control of bacterial translocation.  (+info)

The mxi-Spa type III secretory pathway of Shigella flexneri requires an outer membrane lipoprotein, MxiM, for invasin translocation. (3/922)

Invasion of epithelial cells by Shigella flexneri is mediated by a set of translocated bacterial invasins, the Ipa proteins, and its dedicated type III secretion system, called Mxi-Spa. We show here that mxiM, part of the mxi-spa locus in the S. flexneri virulence plasmid, encodes an indispensable type III secretion apparatus component, required for both Ipa translocation and tissue culture cell invasion. We demonstrated that mature MxiM, first identified as a putative lipoprotein, is lipidated in vivo. Consistent with features of known lipoproteins, MxiM (i) can be labeled with [3H]palmitate and [2-3H]glycerol, (ii) is associated with the cell envelope, (iii) is secreted independently of the type III pathway, and (iv) requires an intact lipoprotein modification and processing site for full activity. The lipidated form of MxiM was detected primarily in the outer membrane, where it establishes a peripheral association with the inner leaflet. Through analysis of subcellular Ipa distribution in a mxiM null mutant background, MxiM was found to be required for the assembly and/or function of outer, but not inner, membrane regions of Mxi-Spa. This function probably requires interactions with other Mxi-Spa subunits within the periplasmic space. We discuss implications of these findings with respect to the function of MxiM and the structure of Mxi-Spa as a whole.  (+info)

Adaptive immune response to Shigella flexneri 2a cydC in immunocompetent mice and mice lacking immunoglobulin A. (4/922)

Shigella flexneri cydC, which is deficient in cytochrome bd, was rapidly cleared from the lungs of intranasally inoculated mice and was Sereny negative, yet it induced 93% protection against challenge with wild-type S. flexneri. Mice that lack immunoglobulin A (IgA) were fully protected, suggesting that IgA may not be required for adaptive immunity in this model system.  (+info)

Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri. (5/922)

Invasion of the intestinal barrier by Shigella flexneri involves complex interactions with epithelial and phagocytic cells. Major perturbation of the signals that maintain epithelial integrity permits mucosal invasion, leading to tissue destruction. Expression of this invasive phenotype depends on the secretion of Ipa proteins (invasins), which can trigger entry of the pathogen into epithelial cells by causing massive rearrangement of the host cell cytoskeleton and cause macrophage apoptotic death by direct interaction of IpaB with interleukin-1beta (IL-1beta)-converting enzyme. This results in the killing of defense cells and in the release of IL-1beta. In vivo, bacteria translocate through the epithelial barrier, essentially via M cells of the follicle-associated epithelium in the colonic and rectal mucosa. Apoptotic death of macrophages in subepithelial tissues allows bacterial survival and triggers inflammation, which destabilizes epithelial structures and facilitates further bacterial entry. Once they are intracellular, bacteria multiply within the cytoplasm and move from cell to cell by an actin-dependent process.  (+info)

Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cytoskeletal exploitation. (6/922)

Bacterial pathogens have evolved numerous strategies to exploit their host's cellular processes so that they can survive and persist. Often, a bacterium must adhere very tightly to the cells and mediate its effects extracellularly, or it must find a way to invade the host's cells and survive intracellularly. In either case, the pathogen hijacks the host's cytoskeleton. The cytoskeleton provides a flexible framework for the cell and is involved in mediating numerous cellular functions, from cell shape and structure to programmed cell death. Altering the host cytoskeleton is crucial for mediating pathogen adherence, invasion, and intracellular locomotion. We highlight recent advances in the pathogenesis of enteropathogenic Escherichia coli, Salmonella Typhimurium, and Shigella flexneri. Each illustrates how bacterial pathogens can exert dramatic effects on the host cytoskeleton.  (+info)

Safety and immunogenicity of Shigella sonnei and Shigella flexneri 2a O-specific polysaccharide conjugates in children. (7/922)

O-specific polysaccharide conjugates of shigellae were safe and immunogenic in young adults, and a Shigella sonnei conjugate conferred protection [1-3]. Shigellosis is primarily a disease of children; therefore, the safety and immunogenicity of S. sonnei and Shigella flexneri 2a conjugates were studied in 4- to 7-year-old children. Local and systemic reactions were minimal. The first injection of both conjugates elicited significant rises in geometric mean levels of serum IgG only to the homologous lipopolysaccharide (LPS) (S. sonnei, 0.32-8.25 ELISA units [EU]; S. flexneri 2a, 1.15-20.5 EU; P<.0001). Revaccination at 6 weeks induced a booster response to S. flexneri 2a LPS (20.5-30.5 EU, P=.003). Six months later, the geometric mean levels of IgG anti-LPS for both groups were higher than the prevaccination levels (P<.0001). Similar, but lesser, rises were observed for IgM and IgA anti-LPS. The investigational Shigella conjugates were safe and immunogenic in children and merit evaluation of their efficacy.  (+info)

A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. (8/922)

Listeria monocytogenes, Shigella flexneri, and Rickettsia conorii are three bacterial pathogens that are able to polymerize actin into 'comet tail' structures and move within the cytosol of infected cells. The actin-based motilities of L. monocytogenes and S. flexneri are known to require the bacterial proteins ActA and IcsA, respectively, and several mammalian cytoskeleton proteins including the Arp2/3 complex and VASP (vasodilator-stimulated phosphoprotein) for L. monocytogenes and vinculin and N-WASP (the neural Wiskott-Aldrich syndrome protein) for S. flexneri. In contrast, little is known about the motility of R. conorii. In the present study, we have analysed the actin-based motility of this bacterium in comparison to that of L. monocytogenes and S. flexneri. Rickettsia moved at least three times more slowly than Listeria and Shigella in both infected cells and Xenopus laevis egg extracts. Decoration of actin with the S1 subfragment of myosin in infected cells showed that the comet tails of Rickettsia have a structure strikingly different from those of L. monocytogenes or S. flexneri. In Listeria and Shigella tails, actin filaments form a branching network while Rickettsia tails display longer and not cross-linked actin filaments. Immunofluorescence studies revealed that the two host proteins, VASP and (&agr;)-actinin colocalized with actin in the tails of Rickettsia but neither the Arp2/3 complex which we detected in the Shigella actin tails, nor N-WASP, were detected in Rickettsia actin tails. Taken together, these results suggest that R. conorii may use a different mechanism of actin polymerization.  (+info)