An antigen-capture enzyme-linked immunosorbent assay (ELISA) to detect isometamidium chloride in Oncorhynchus spp. (33/793)

An antigen-capture enzyme-linked immunosorbent assay (ELISA) was developed to detect and measure isometamidium chloride in the plasma of Oncorhynchus tshawytscha and O. mykiss. Isometamidium-ovalbumin conjugate and anti-isometamidium antibodies were used to coat polystyrene plates. The peroxidase saturation technique was used to optimize the coating antigen concentration; it demonstrated low affinity of the isometamidium-ovalbumin conjugate but high affinity of the anti-isometamidium antibodies for polystyrene surface sites. The optimal conditions of antiisometamidium antibodies to coat plates was at pH 7.3 and a 1:1000 dilution (0.0012 mg ml(-1) protein). The ELISA was sensitive as it detected 0.0006 mg ml(-1) of isometamidium in fish plasma. Isometamidium diluted with saline could not be detected at concentrations less than 0.05 mg ml(-1). The results indicate that this ELISA is much more sensitive when isometamidium is bound to plasma than unbound isometamidium in saline.  (+info)

Immobilization of DNA by UV irradiation and its utilization as functional materials. (34/793)

The water-insoluble DNA film was successfully prepared by UV irradiation. The DNA film was stable in water. It could effectively accumulated the DNA-binding intercalating materials, such as ethidium bromide, dibenzo-p-dioxin and benzo[a]pyrene, in their aqueous solutions. On the other hand, DNA was immobilized onto nonwoven cellulose fabrics, also by the UV irradiation. The DNA immobilized cloth was found to bind silver ions. The DNA-cloth containing silver ion showed antibacterial activity. The water-insoluble DNA prepared by UV irradiation has a potential ability to serve as biomaterials for medical, engineering and environmental objects.  (+info)

Use of RT-PCR for diagnosis of infectious salmon anaemia virus (ISAV) in carrier sea trout Salmo trutta after experimental infection. (35/793)

The emergence of infectious salmon anaemia virus (ISAV) in Canada and Scotland and frequent new outbreaks of the disease in Norway strongly suggest that there are natural reservoirs for the virus. The main host for the ISA virus is probably a fish occurring in the coastal area, most likely a salmonid fish. Since sea trout is an abundant species along the Norwegian coast, common in areas where ISA outbreaks occur, and possibly a life-long carrier of the ISA virus, a study was initiated to evaluate reverse transcriptase polymerase chain reaction (RT-PCR) for diagnosis of the virus in experimentally infected trout. Several tissues (kidney, spleen, heart and skin) were collected from the trout during a 135 d period. The following diagnostic methods for detection of the ISA virus were compared: cell culture (Atlantic Salmon Kidney, ASK cells), challenge of disease-free salmon with blood from the infected trout, and RT-PCR. The RT-PCR was the most sensitive of these methods. With the help of this technique it was possible to pick out positive individuals throughout the experimental period of 135 d. Challenge of disease-free salmon were more sensitive than cell culture (ASK cells). These 2 latter methods require use of the immunofluorescent antibody test (IFAT) or RT-PCR for verification of presence of ISA virus.  (+info)

Ontogenetic changes in visual sensitivity of the parasitic salmon louse Lepeophtheirus salmonis. (36/793)

The salmon louse, Lepeophtheirus salmonis, is an ectoparasitic copepod of salmonid fishes whose life cycle involves two broadly defined, free-living larval stages, the nauplius and the copepodid. After settling on a host, the copepodid goes through various transformations to become a mobile adult. We recorded swimming responses of free-swimming salmon lice at the naupliar, copepodid and adult stages to the onset (ON) and offset (OFF) of lights of varying spectral irradiance and polarization. Nauplii showed a prominent swim-up OFF response across the spectrum 352-652 nm, but no ON response. Copepodids exhibited a swim-up ON response and a passive (sinking) OFF response across the same spectral range. Adults showed active swim-up responses to both ON and OFF stimuli, although the OFF response was proportionately stronger. The spectral range of the adult ON and OFF responses was the same as that of the copepodids and slightly greater than that of the nauplii, which did not exhibit responses at 652 nm. The absolute sensitivity of copepodids under white light (approx. 10(-13) photons m(2) s(1)) was higher than that of nauplii (approx. 10(-17) photons(-1) m(2 )s, OFF response) and that of adult female lice (approx. 10(-14) photons(-1)m(2)s). This suggests that the naupliar visual system is best suited for detection of shadows (e.g. the host) under a bright light field (daylight hours), while copepodids and adults may be more specialized for host detection at crepuscular periods and during the night, when light levels are low. None of the developmental stages responded to the rotation of the plane of polarized light or exhibited any difference in directed response when polarized light was used in place of diffuse light.  (+info)

Modulation of pacemaker activity by salmon gonadotropin-releasing hormone (sGnRH) in terminal nerve (TN)-GnRH neurons. (37/793)

The terminal nerve (TN)-gonadotropin-releasing hormone (GnRH) neurons project widely in the brain instead of the pituitary and show endogenous pacemaker activity that is dependent on the physiological conditions of the animal. We suggest that the TN-GnRH system may act as a putative neuromodulator that is involved in the regulation of many long-lasting changes in the animal's behavior. In the present study, we find that the pacemaker activity of TN-GnRH neurons is modulated by salmon GnRH (sGnRH), which is the same molecular species of GnRH peptide produced by TN-GnRH neurons themselves. Bath application of sGnRH (2-200 nM) transiently decreased (early phase) and then subsequently increased (late phase) the frequency of pacemaker activity of TN-GnRH neurons in a dose-dependent manner. These biphasic changes of pacemaker activities were suppressed by intracellular application of guanosin 5'-0-(2-thiodi-phosphate) (GDP-beta-S). The results suggest that G-protein coupled receptors are present on the cell surface and play a triggering role in modulating the frequency of pacemaker activities in TN-GnRH neurons. Because the TN-GnRH neurons make tight cell clusters with no intervening glial cells, it may be further suggested that GnRH released from GnRH neurons regulates the activities of their own (autocrine) and/or neighboring GnRH neurons (paracrine).  (+info)

Immunoreactive pit-1 protein in hyperplastic pars intermedia induced by calcitonin of the rat pituitary gland. (38/793)

To elucidate the effects of synthetic salmon calcitonin (sCT) on the cells in the rat pituitary gland, we histopathologically and immunohistochemically examined the early changes after 4 or 13 weeks treatment with sCT 120 IU/kg. Focal proliferative lesions of the anterior pituitary glands were consistently found after treatment with sCT for 13 weeks. Histologically, the cells with the focal proliferative lesions were classified into the following three groups: 1) enlarged basophilic cell focus, 2) vacuolated cell focus and 3) chromophobe cell focus. These focal proliferative lesions had positive staining only for the alpha-subunit and failed to show Pit-1 protein immunoreactivity. The sCT treatment also increased the thickness of the pars intermedia. Hypertrophy of the pars intermediate cells was characteristically seen. Furthermore, Pit-1 protein immunoreactivity was clearly detected in the nuclei of the hyperplastic pars intermediate cells. All pars intermediate cells were equally stained by alpha- or beta-MSH and beta-endorphin in both vehicle- and sCT-treatment. No difference was seen. These findings strongly suggest a very close relationship between Pit-1 protein immunoreactivity and cellular proliferation induced by sCT.  (+info)

Single-dilution enzyme-linked immunosorbent assay for quantification of antigen-specific salmonid antibody. (39/793)

An enzyme-linked immunosorbent assay (ELISA) was developed on the basis of testing a single dilution of serum to quantify the level of antibody to the p57 protein of Renibacterium salmoninarum in sockeye salmon (Oncorhynchus nerka). The levels of antibody were interpolated from a standard curve constructed by relating the optical densities (OD) produced by several dilutions of a high-titer rainbow trout (O. mykiss) antiserum to the p57 protein. The ELISA OD values produced by as many as 36 test sera on each microplate were compared with the standard curve to calculate the antigen-specific antibody activity. Repeated measurements of 36 samples on 3 microplates on each of 6 assay dates indicated that the mean intraassay coefficient of variation (CV) was 6.68% (range, 0-23%) and the mean interassay CV was 8.29% (range, 4-16%). The antibody levels determined for the serum sample from 24 sockeye salmon vaccinated with a recombinant p57 protein generally were correlated with the levels determined by endpoint titration (r2 = 0.936) and with results from another ELISA that was based on extrapolation of antibody levels from a standard curve (r2 = 0.956). The single-dilution antibody ELISA described here increases the number of samples that can be tested on each microplate compared with immunoassays based on analysis of several dilutions of each test serum. It includes controls for interassay standardization and can be used to test fish weighing <3 g.  (+info)

Smoothened activates Galphai-mediated signaling in frog melanophores. (40/793)

The 7-pass transmembrane protein Smoothened was investigated for its ability to act as a G-protein-coupled receptor in Xenopus laevis melanophores. A plasmid containing the human Smoothened cDNA insert was transfected into immortalized frog pigment cells. Cells expressing the protein showed a phenotype of persistent pigment aggregation, a hallmark of constitutive Galpha(i) activation. Smoothened-mediated pigment aggregation was reversed by treatment with pertussis toxin or by co-expression with dominant negative Galpha(i). The ability of melanophores to express functional Smoothened was also determined by its co-expression with the twelve-pass transmembrane protein, Patched. Patched blocked Smoothened-mediated melanosome aggregation in a dose-dependent manner, consistent with its physiological role as an inhibitor of Smoothened. That the reconstituted Patched-Smoothened receptor complex functions normally in pigment cells was demonstrated by co-transfection with the activating ligand, Sonic hedgehog, as well as by direct application of the recombinant Sonic hedgehog protein. Sonic hedgehog reversed Patched-mediated inhibition of Smoothened and induced pigment aggregation. The findings demonstrate that the human Sonic hedgehog receptor complex can be functionally reconstituted in melanophores and that it is capable of transmembrane signaling by utilizing endogenous Galpha(i).  (+info)