Mapping of the homothallic genes, HM alpha and HMa, in Saccharomyces yeasts. (1/1198)

Two of the three homothallic genes, HM alpha and HMa, showed direct linkage to the mating-type locus at approximately 73 and 98 strans (57 and 65 centimorgans [cM], respectively, whereas, the other, HO, showed no linkage to 25 standard markers distributed over 17 chromosomes including the mating-type locus. To determine whether the HM alpha and HMa loci located on the left or right side of the mating-type locus, equations for three factor analysis of three linked genes were derived. Tetrad data were collected and were compared with expected values by chi 2 statistics. Calculations indicated that the HM alpha gene is probably located on the right arm at 95 strans (65 cM) from the centromere and the HMa locus at approximately 90 strans (64 cM) on the left arm of chromosome III.  (+info)

Signal perception and transduction: the role of protein kinases. (2/1198)

Cells can react to environmental changes by transduction of extracellular signals, to produce intracellular responses. Membrane-impermeable signal molecules are recognized by receptors, which are localized on the plasma membrane of the cell. Binding of a ligand can result in the stimulation of an intrinsic enzymatic activity of its receptor or the modulation of a transducing protein. The modulation of one or more intracellular transducing proteins can finally lead to the activation or inhibition of a so-called 'effector protein'. In many instances, this also results in altered gene expression. Phosphorylation by protein kinases is one of the most common and important regulatory mechanisms in signal transmission. This review discusses the non-channel transmembrane receptors and their downstream signaling, with special focus on the role of protein kinases.  (+info)

Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. (3/1198)

Our work and that of others defined mitosis-specific (Rad21 subfamily) and meiosis-specific (Rec8 subfamily) proteins involved in sister chromatid cohesion in several eukaryotes, including humans. Mutation of the fission yeast Schizosaccharomyces pombe rec8 gene was previously shown to confer a number of meiotic phenotypes, including strong reduction of recombination frequencies in the central region of chromosome III, absence of linear element polymerization, reduced pairing of homologous chromosomes, reduced sister chromatid cohesion, aberrant chromosome segregation, defects in spore formation, and reduced spore viability. Here we extend the description of recombination reduction to the central regions of chromosomes I and II. We show at the protein level that expression of rec8 is meiosis specific and that Rec8p localizes to approximately 100 foci per prophase nucleus. Rec8p was present in an unphosphorylated form early in meiotic prophase but was phosphorylated prior to meiosis I, as demonstrated by analysis of the mei4 mutant blocked before meiosis I. Evidence for the persistence of Rec8p beyond meiosis I was obtained by analysis of the mutant mes1 blocked before meiosis II. A human gene, which we designate hrec8, showed significant primary sequence similarity to rec8 and was mapped to chromosome 14. High mRNA expression of mouse and human rec8 genes was found only in germ line cells, specifically in testes and, interestingly, in spermatids. hrec8 was also expressed at a low level in the thymus. Sequence similarity and testis-specific expression indicate evolutionarily conserved functions of Rec8p in meiosis. Possible roles of Rec8p in the integration of different meiotic events are discussed.  (+info)

Ibd1p, a possible spindle pole body associated protein, regulates nuclear division and bud separation in Saccharomyces cerevisiae. (4/1198)

The proper spatial and temporal coordination of mitosis and cytokinesis is essential for maintaining genomic integrity. We describe the identification and characterization of the Saccharomyces cerevisiae IBD1 gene, which encodes a novel protein that regulates the proper nuclear division and bud separation. IBD1 was identified by the limited homology to byr4, a dosage-dependent regulator of cytokinesis in Schizosaccharomyces pombe. IBD1 is not an essential gene, and the knock-out cells show no growth defects except for the reduced mating efficiency [1]. However, upon ectopic expression from an inducible promoter, IBD1 is lethal to the cell and leads to abnormal nuclear division and bud separation. In detail, approximately 90% of the IBD1 overexpressing cells arrest at large bud stages with dividing or divided nuclei. In some IBD1 overexpressing cells, spindle elongation and chromosome separation occur within the mother cell, leading to anucleated and binucleate daughter cells. The anucleated cell can not bud, but the binucleate cell proceeds through another cell cycle(s) to produce a cell with multiple nuclei and multiple buds. Observations of the F-actin and chitin rings in the IBD1 overexpressing cells reveal that these cells lose the polarity for bud site selection and growth or attain the hyper-polarity for growth. Consistent with the phenotypes, the IBD1 overexpressing cells contain a broad range of DNA content, from 2 to 4 N or more. A functional Ibd1p-GFP fusion protein localizes to a single dot at the nuclear DNA boundary in the divided nuclei or to double dots in dividing nuclei, suggesting its localization on the spindle pole body (SPB). The cross-species expressions of IBD1 in S. pombe and byr4 in S. cerevisiae cause defects in shape, implicating the presence of a conserved mechanism for the control of cytokinesis in eukaryotes. We propose that Ibd1p is an SPB associated protein that links proper nuclear division to cytokinesis and bud separation.  (+info)

A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. (5/1198)

Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination.  (+info)

Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. (6/1198)

BACKGROUND: Saccharomyces boulardii is a non-pathogenic yeast which exerts trophic effects on human and rat small intestinal mucosa. AIMS: To examine the effects of S boulardii on ileal adaptation after proximal enterectomy in rats. METHODS: Wistar rats, aged eight weeks, underwent 60% proximal resection or transection and received by orogastric intubation either 1 mg/g body wt per day lyophilised S boulardii or the vehicle for seven days. The effects on ileal mucosal adaptation were assessed eight days after surgery. RESULTS: Compared with transection, resection resulted in mucosal hyperplasia with significant decreases in the specific and total activities of sucrase, lactase, and maltase. Treatment of resected animals with S boulardii had no effect on mucosal hyperplasia but did upgrade disaccharidase activities to the levels of the transected group. Enzyme stimulation by S boulardii was associated with significant increases in diamine oxidase activity and mucosal polyamine concentrations. Likewise, sodium dependent D-glucose uptake by brush border membrane vesicles, measured as a function of time and glucose concentration in the incubation medium, was significantly (p<0.05) increased by 81% and three times respectively in the resected group treated with S boulardii. In agreement with this, expression of the sodium/glucose cotransporter-1 in brush border membranes of resected rats treated with S boulardii was enhanced twofold compared with resected controls. CONCLUSION: Oral administration of S boulardii soon after proximal enterectomy improves functional adaptation of the remnant ileum.  (+info)

Construction of an effective host-vector system for the yeast Saccharomyces exiguus Yp74L-3. (7/1198)

An effective host-vector system specific to the yeast Saccharomyces exiguus Yp74L-3 was constructed to promote the molecular genetic analyses for the yeast. To obtain a stable reversionless host strain, we constructed an S. exiguus strain carrying leu2::ScURA3 by disrupting the S. exiguus LEU2 gene with the S. cerevisiae URA3 gene. A vector plasmid unique to S. exiguus was subsequently developed by inserting both the LEU2 gene and an ARS cloned from S. exiguus into an Escherichia coli phagemid, pUC119. The vector constructed, pTH119 was able to transform the S. exiguus leu2::ScURA3 strain to Leu+ efficiently. The stability of the vector in the S. exiguus host cells resembled that of a YRp-type vector in S. cerevisiae.  (+info)

Conservation of ARS elements and chromosomal DNA replication origins on chromosomes III of Saccharomyces cerevisiae and S. carlsbergensis. (8/1198)

DNA replication origins, specified by ARS elements in Saccharomyces cerevisiae, play an essential role in the stable transmission of chromosomes. Little is known about the evolution of ARS elements. We have isolated and characterized ARS elements from a chromosome III recovered from an alloploid Carlsberg brewing yeast that has diverged from its S. cerevisiae homeologue. The positions of seven ARS elements identified in this S. carlsbergensis chromosome are conserved: they are located in intergenic regions flanked by open reading frames homologous to those that flank seven ARS elements of the S. cerevisiae chromosome. The S. carlsbergensis ARS elements were active both in S. cerevisiae and S. monacensis, which has been proposed to be the source of the diverged genome present in brewing yeast. Moreover, their function as chromosomal replication origins correlated strongly with the activity of S. cerevisiae ARS elements, demonstrating the conservation of ARS activity and replication origin function in these two species.  (+info)