A mutation linked with Bartter's syndrome locks Kir 1.1a (ROMK1) channels in a closed state. (1/139)

Mutations in the inward rectifying renal K(+) channel, Kir 1.1a (ROMK), have been linked with Bartter's syndrome, a familial salt-wasting nephropathy. One disease-causing mutation removes the last 60 amino acids (332-391), implicating a previously unappreciated domain, the extreme COOH terminus, as a necessary functional element. Consistent with this hypothesis, truncated channels (Kir 1.1a 331X) are nonfunctional. In the present study, the roles of this domain were systematically evaluated. When coexpressed with wild-type subunits, Kir 1.1a 331X exerted a negative effect, demonstrating that the mutant channel is synthesized and capable of oligomerization. Plasmalemma localization of Kir 1.1a 331X green fluorescent protein (GFP) fusion construct was indistinguishable from the GFP-wild-type channel, demonstrating that mutant channels are expressed on the oocyte plasma membrane in a nonconductive or locked-closed conformation. Incremental reconstruction of the COOH terminus identified amino acids 332-351 as the critical residues for restoring channel activity and uncovered the nature of the functional defect. Mutant channels that are truncated at the extreme boundary of the required domain (Kir 1.1a 351X) display marked inactivation behavior characterized by frequent occupancy in a long-lived closed state. A critical analysis of the Kir 1.1a 331X dominant negative effect suggests a molecular mechanism underlying the aberrant closed-state stabilization. Coexpression of different doses of mutant with wild-type subunits produced an intermediate dominant negative effect, whereas incorporation of a single mutant into a tetrameric concatemer conferred a complete dominant negative effect. This identifies the extreme COOH terminus as an important subunit interaction domain, controlling the efficiency of oligomerization. Collectively, these observations provide a mechanistic basis for the loss of function in one particular Bartter's-causing mutation and identify a structural element that controls open-state occupancy and determines subunit oligomerization. Based on the overlapping functions of this domain, we speculate that intersubunit interactions within the COOH terminus may regulate the energetics of channel opening.  (+info)

Channelopathies of inwardly rectifying potassium channels. (2/139)

Mutations in genes encoding ion channels have increasingly been identified to cause disease conditions collectively termed channelopathies. Recognizing the molecular basis of an ion channel disease has provided new opportunities for screening, early diagnosis, and therapy of such conditions. This synopsis provides an overview of progress in the identification of molecular defects in inwardly rectifying potassium (Kir) channels. Structurally and functionally distinct from other channel families, Kir channels are ubiquitously expressed and serve functions as diverse as regulation of resting membrane potential, maintenance of K(+) homeostasis, control of heart rate, and hormone secretion. In humans, persistent hyperinsulinemic hypoglycemia of infancy, a disorder affecting the function of pancreatic beta cells, and Bartter's syndrome, characterized by hypokalemic alkalosis, hypercalciuria, increased serum aldosterone, and plasma renin activity, are the two major diseases linked so far to mutations in a Kir channel or associated protein. In addition, the weaver phenotype, a neurological disorder in mice, has also been associated with mutations in a Kir channel subtype. Further genetic linkage analysis and full understanding of the consequence that a defect in a Kir channel would have on disease pathogenesis are among the priorities in this emerging field of molecular medicine.  (+info)

Dose related growth response to indometacin in Gitelman syndrome. (3/139)

Growth failure is a recognised feature of Gitelman syndrome, although it is not as frequent as in Bartter syndrome. Indometacin is reported to improve growth in Bartter syndrome, but not in Gitelman syndrome, where magnesium supplements are recommended. This paper presents 3 sisters with Gitelman syndrome who could not tolerate magnesium supplements, and whose hypotension and polyuria were eliminated by taking 2 mg/kg/day indometacin, but who grew poorly. However, increasing the indometacin dose to 4 mg/kg/day improved their growth significantly, without changing their symptoms or biochemistry. Gastrointestinal haemorrhage necessitated the use of misoprostol.  (+info)

pH gating of ROMK (K(ir)1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. (4/139)

Inward-rectifier K(+) channels of the ROMK (K(ir)1.1) subtype are responsible for K(+) secretion and control of NaCl absorption in the kidney. A hallmark of these channels is their gating by intracellular pH in the neutral range. Here we show that a lysine residue close to TM1, identified previously as a structural element required for pH-induced gating, is protonated at neutral pH and that this protonation drives pH gating in ROMK and other K(ir) channels. Such anomalous titration of this lysine residue (Lys-80 in K(ir)1.1) is accomplished by the tertiary structure of the K(ir) protein: two arginines in the distant N and C termini of the same subunit (Arg-41 and Arg-311 in K(ir)1.1) are located in close spatial proximity to the lysine allowing for electrostatic interactions that shift its pK(a) into the neutral pH range. Structural disturbance of this triad as a result from a number of point mutations found in patients with antenatal Bartter syndrome shifts the pK(a) of the lysine residue off the neutral pH range and results in channels permanently inactivated under physiological conditions. Thus, the results provide molecular understanding for normal pH gating of K(ir) channels as well as for the channel defects found in patients with antenatal Bartter syndrome.  (+info)

Novel mutations in thiazide-sensitive Na-Cl cotransporter gene of patients with Gitelman's syndrome. (5/139)

Gitelman's syndrome (GS) is an autosomal recessive disorder characterized by metabolic alkalosis, hypokalemia, hypomagnesemia, and hypocalciuria that has recently been reported to be linked to thiazide-sensitive Na-Cl cotransporter (TSC) gene mutations. In this study, possible mutations in the TSC gene of six Japanese patients clinically diagnosed with GS were investigated. Twenty-six exons encoding TSC were amplified by PCR and then completely sequenced by the direct sequencing method. Patient A showed a missense mutation of Arg 642 to Cys on the paternal allele and a missense mutation of Val 578 to Met and a 2-bp deletion (nucleotide 2543-2544) on the maternal allele. This deletion results in a frameshift that alters codon 837 to encode a stop signal rather than phenylalanine, and it is predicted to lead to loss of the latter half of the intracellular carboxy terminus. In the second family, two affected sisters, patients B and C, had a homozygous missense mutation of Thr 180 to Lys. Both of their parents, who are consanguineously married, have a heterozygous Thr180Lys mutation. Patient D has a homozygous mutation Thr180Lys, which is the same as the second family. Haplotype analysis indicates that patients B and C are not related to patient D. In patients E and F, we could identify only one mutant allele; Ala569Glu and Leu849His, respectively. All of the mutations identified are novel except for the Arg642Cys mutation, which has been found in a Japanese GS patient. Although further in vitro study is required to prove that the mutations are responsible for GS, it is possible that Thr180Lys and Arg642Cys mutations might be common mutations in Japanese GS.  (+info)

Uncompensated polyuria in a mouse model of Bartter's syndrome. (6/139)

We have used homologous recombination to disrupt the mouse gene coding for the NaK2Cl cotransporter (NKCC2) expressed in kidney epithelial cells of the thick ascending limb and macula densa. This gene is one of several that when mutated causes Bartter's syndrome in humans, a syndrome characterized by severe polyuria and electrolyte imbalance. Homozygous NKCC2-/- pups were born in expected numbers and appeared normal. However, by day 1 they showed signs of extracellular volume depletion (hematocrit 51%; wild type 37%). They subsequently failed to thrive. By day 7, they were small and markedly dehydrated and exhibited renal insufficiency, high plasma potassium, metabolic acidosis, hydronephrosis of varying severity, and high plasma renin concentrations. None survived to weaning. Treatment of -/- pups with indomethacin from day 1 prevented growth retardation and 10% treated for 3 weeks survived, although as adults they exhibited severe polyuria (10 ml/day), extreme hydronephrosis, low plasma potassium, high blood pH, hypercalciuria, and proteinuria. Wild-type mice treated with furosemide, an inhibitor of NaK2Cl cotransporters, have a phenotype similar to the indomethacin-rescued -/- adults except that hydronephrosis was mild. The polyuria, hypercalciuria, and proteinuria of the -/- adults and furosemide-treated wild-type mice were unresponsive to inhibitors of the renin angiotensin system, vasopressin, and further indomethacin. Thus absence of NKCC2 in the mouse causes polyuria that is not compensated elsewhere in the nephron. The NKCC2 mutant animals should be valuable for uncovering new pathophysiologic and therapeutic aspects of genetic disturbances in water and electrolyte recovery by the kidney.  (+info)

Bartter syndrome: an overview. (7/139)

The term Bartter syndrome denotes a group of renal diseases which share a common denominator of hypokalaemia and metabolic alkalosis. The patch-clamp technique has made possible the analysis of single ion channels, improving our understanding of the molecular physiopathology of all the 'Bartter-like' syndromes. Genetic mapping of each defect has further clarified the mutations involved and the possible modes of inheritance. This improved understanding has opened new avenues for therapy, improving mortality and morbidity in these patients. Another group of illnesses, the 'pseudo-Bartter syndrome', may produce a hypokalaemic metabolic alkalosis without primary renal disease. The underlying illness needs to be identified and treated.  (+info)

Functional and structural analysis of ClC-K chloride channels involved in renal disease. (8/139)

ClC-K channels belong to the CLC family of chloride channels and are predominantly expressed in the kidney. Genetic evidence suggests their involvement in transepithelial transport of chloride in distal nephron segments; ClC-K1 gene deletion leads to nephrogenic diabetes insipidus in mice, and mutations of the hClC-Kb gene cause Bartter's syndrome type III in humans. Expression of rClC-K1 in Xenopus oocytes yielded voltage-independent currents that were pH-sensitive, had a Br(-) > NO(3)(-) = Cl(-) > I(-) conductance sequence, and were activated by extracellular calcium. A glutamate for valine exchange at amino acid position 166 induced strong voltage dependence and altered the conductance sequence of ClC-K1. This demonstrates that rClC-K1 indeed functions as an anion channel. By contrast, we did not detect currents upon hClC-Kb expression in Xenopus oocytes. Using a chimeric approach, we defined a protein domain that, when replaced by that of rClC-K1, allowed the functional expression of a chimera consisting predominantly of hClC-Kb. Its currents were linear and were inhibited by extracellular acidification. Contrasting with rClC-K1, they displayed a Cl(-) > Br(-)> I(-) > NO(3)(-) conductance sequence and were not augmented by extracellular calcium. Insertion of point mutations associated with Bartter's syndrome type III destroyed channel activity. We conclude that ClC-K proteins form constitutively open chloride channels with distinct physiological characteristics.  (+info)