A cytotoxic ribonuclease targeting specific transfer RNA anticodons. (1/104)

The carboxyl-terminal domain of colicin E5 was shown to inhibit protein synthesis of Escherichia coli. Its target, as revealed through in vivo and in vitro experiments, was not ribosomes as in the case of E3, but the transfer RNAs (tRNAs) for Tyr, His, Asn, and Asp, which contain a modified base, queuine, at the wobble position of each anticodon. The E5 carboxyl-terminal domain hydrolyzed these tRNAs just on the 3' side of this nucleotide. Tight correlation was observed between the toxicity of E5 and the cleavage of intracellular tRNAs of this group, implying that these tRNAs are the primary targets of colicin E5.  (+info)

The peculiar architectural framework of tRNASec is fully recognized by yeast AspRS. (2/104)

The wild-type transcript of Escherichia coli tRNASec, characterized by a peculiar core architecture and a large variable region, was shown to be aspartylatable by yeast AspRS. Similar activities were found for tRNASec mutants with methionine, leucine, and tryptophan anticodons. The charging efficiency of these molecules was found comparable to that of a minihelix derived from tRNAAsp and is accounted for by the presence of the discriminator residue G73, which is a major aspartate identity determinant. Introducing the aspartate identity elements from the anticodon loop (G34, U35, C36, C38) into tRNASec transforms this molecule into an aspartate acceptor with kinetic properties identical to tRNAAsp. Expression of the aspartate identity set in tRNASec is independent of the size of its variable region. The functional study was completed by footprinting experiments with four different nucleases as structural probes. Protection patterns by AspRS of transplanted tRNASec and tRNAAsp were found similar. They are modified, particularly in the anticodon loop, upon changing the aspartate anticodon into that of methionine. Altogether, it appears that recognition of a tRNA by AspRS is more governed by the presence of the aspartate identity set than by the structural framework that carries this set.  (+info)

An mtDNA mutation in the initiation codon of the cytochrome C oxidase subunit II gene results in lower levels of the protein and a mitochondrial encephalomyopathy. (3/104)

A novel heteroplasmic 7587T-->C mutation in the mitochondrial genome which changes the initiation codon of the gene encoding cytochrome c oxidase subunit II (COX II), was found in a family with mitochondrial disease. This T-->C transition is predicted to change the initiating methionine to threonine. The mutation load was present at 67% in muscle from the index case and at 91% in muscle from the patient's clinically affected son. Muscle biopsy samples revealed isolated COX deficiency and mitochondrial proliferation. Single-muscle-fiber analysis revealed that the 7587C copy was at much higher load in COX-negative fibers than in COX-positive fibers. After microphotometric enzyme analysis, the mutation was shown to cause a decrease in COX activity when the mutant load was >55%-65%. In fibroblasts from one family member, which contained >95% mutated mtDNA, there was no detectable synthesis or any steady-state level of COX II. This new mutation constitutes a new mechanism by which mtDNA mutations can cause disease-defective initiation of translation.  (+info)

The identity determinants required for the discrimination between tRNAGlu and tRNAAsp by glutamyl-tRNA synthetase from Escherichia coli. (4/104)

We previously elucidated the major determinant set for Escherichia coli tRNAGlu identity (U34, U35, C36, A37, G1*C72, U2*A71, U11*A24, U13*G22**Alpha46, and Delta47) and showed that the set is sufficient to switch the identity of tRNAGln to Glu [Sekine, S., Nureki, O., Sakamoto, K., Niimi, T., Tateno, M., Go, M., Kohno, T., Brisson, A., Lapointe, J. & Yokoyama, S. (1996) J. Mol. Biol. 256, 685-700]. In the present study, we attempted to switch the identity of tRNAAsp, which has a sequence similar to that of tRNAGlu, and consequently possesses many nucleotide residues corresponding to the Glu identity determinants (U35, C36, A37, G1*C72, and U11*A24). A simple transplantation of the rest of the major determinants (U34, U2*A71, U13*G22**Alpha46, and Delta47) to the framework of tRNAAsp did not result in a sufficient switch of the tRNAAsp identity to Glu. To confer an optimal glutamate accepting activity to tRNAAsp, two other elements, C4*G69 in the middle of the acceptor stem and C12*G23**C9 in the augmented D helix, were required. Consistently, the two base pairs, C4*G69 and C12*G23, in tRNAGlu had been shown to exist in the interface with glutamyl-tRNA synthetase (GluRS) by phosphate-group footprinting. We also found the two elements in the framework of tRNAGln, and determined that their contributions successfully changed the identity of tRNAGln to Glu in the previous study. By the identity-determinant set (C4*G69 and C12*G23**C9 in addition to U34, U35, C36, A37, G1*C72, U2*A71, U11*A24, U13*G22**Alpha46, and Delta47) the activity of GluRS was optimized and efficient discrimination from the noncognate tRNAs was achieved.  (+info)

Site-specific recombination of temperate Myxococcus xanthus phage Mx8: genetic elements required for integration. (5/104)

Like most temperate bacteriophages, phage Mx8 integrates into a preferred locus on the genome of its host, Myxococcus xanthus, by a mechanism of site-specific recombination. The Mx8 int-attP genes required for integration map within a 2.2-kilobase-pair (kb) fragment of the phage genome. When this fragment is subcloned into a plasmid vector, it facilitates the site-specific integration of the plasmid into the 3' ends of either of two tandem tRNAAsp genes, trnD1 and trnD2, located within the attB locus of the M. xanthus genome. Although Int-mediated site-specific recombination occurs between attP and either attB1 (within trnD1) or attB2 (within trnD2), the attP x attB1 reaction is highly favored and often is accompanied by a deletion between attB1 and attB2. The int gene is the only Mx8 gene required in trans for attP x attB recombination. The int promoter lies within the 106-bp region immediately upstream of one of two alternate GTG start codons, GTG-5208 (GTG at bp 5208) and GTG-5085, for integrase and likely is repressed in the prophage state. All but the C-terminal 30 amino acid residues of the Int protein are required for its ability to mediate attP x attB recombination efficiently. The attP core lies within the int coding sequence, and the product of integration is a prophage in which the 3' end of int is replaced by host sequences. The prophage intX gene is predicted to encode an integrase with a different C terminus.  (+info)

Synthesis of aspartyl-tRNA(Asp) in Escherichia coli--a snapshot of the second step. (6/104)

The 2.4 A crystal structure of the Escherichia coli aspartyl-tRNA synthetase (AspRS)-tRNA(Asp)-aspartyl-adenylate complex shows the two substrates poised for the transfer of the aspartic acid moiety from the adenylate to the 3'-hydroxyl of the terminal adenosine of the tRNA. A general molecular mechanism is proposed for the second step of the aspartylation reaction that accounts for the observed conformational changes, notably in the active site pocket. The stabilization of the transition state is mediated essentially by two amino acids: the class II invariant arginine of motif 2 and the eubacterial-specific Gln231, which in eukaryotes and archaea is replaced by a structurally non-homologous serine. Two archetypal RNA-protein modes of interactions are observed: the anticodon stem-loop, including the wobble base Q, binds to the N-terminal beta-barrel domain through direct protein-RNA interactions, while the binding of the acceptor stem involves both direct and water-mediated hydrogen bonds in an original recognition scheme.  (+info)

Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential. (7/104)

Fragments of the alpha1 C-terminal telopeptide of type I collagen containing the sequence AHDGGR(1209-1214) (CTx) can be measured in urine as an index of bone resorption. We report here that these molecules undergo racemization and isomerization of Asp(1211) in vitro and in vivo, generating a mixture of four isomers: the native peptide form (alphaL), an isomerized form containing a beta-Asp bond (betaL), a racemized form containing a D-Asp residue (alphaD) and an isomerized/racemized form (betaD). To study these reactions at this specific site in collagen, we have employed four immunoassays, each specific for one of the isoforms, and developed HPLC methods for their separation. The kinetics of these reactions were studied in vitro under physiological conditions by incubation of synthetic AHDGGR hexapeptide or mineralized bone collagen. Reactions were found to be strongly shifted towards the beta-Asp forms and slightly in favour of the D-enantiomeric forms. CTx isomers were measured in human urine and in enzymic digests of bovine bone collagen. The results indicated that the extent of racemization and isomerization were correlated with the age and turnover of collagen. The ratios between the native and age-related forms of CTx were elevated in urine from patients with Paget's disease or osteoporosis as compared with that from healthy adults. The alphaL/alphaD CTx ratio had the highest discriminatory power (T-score=23.2; P<0.0001 and T-score=1. 5; P<0.0001 for Paget's disease and osteoporosis respectively). In conclusion, these findings indicate that an assessment of CTx ratios in urine may provide an estimate of bone turnover, aiding in the diagnosis of metabolic bone diseases.  (+info)

Decreased aminoacylation of mutant tRNAs in MELAS but not in MERRF patients. (8/104)

Mutations in human mitochondrial tRNA genes are associated with a number of multisystemic disorders. Using an assay that combines tRNA oxidation and circularization we have determined the relative amounts and states of aminoacylation of mutant and wild-type tRNAs in tissue samples from patients with MELAS syndrome (mito- chondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) and MERRF syndrome (myoclonus epilepsy with ragged red fibers), respectively. In most, but not all, biopsies from MELAS patients carrying the A3243G substitution in the mitochondrial tRNA(Leu(UUR))gene, the mutant tRNA is under-represented among processed and/or aminoacylated tRNAs. In contrast, in biopsies from MERRF patients harboring the A8344G substitution in the tRNA(Lys)gene neither the relative abundance nor the aminoacylation of the mutated tRNA is affected. Thus, whereas the A3243G mutation may contribute to the pathogenesis of MELAS by reducing the amount of aminoacylated tRNA(Leu), the A8344G mutation does not affect tRNA(Lys)function in the same way.  (+info)