Energy depletion differently affects membrane transport and intracellular metabolism of riboflavin taken up by isolated rat enterocytes. (1/773)

Isolated rat enterocytes, both normal and those de-energized with rotenone, were used to study the energy dependence of membrane and intracellular intestinal riboflavin transport in vitro. Membrane and intracellular transport were investigated by using short (3 min) and long (20 min) incubation times, respectively. For both types of cells and incubation times, [3H]-riboflavin uptake presented a saturable component prevailing at physiologic intraluminal concentrations. At 3 min incubation, saturable [3H]-riboflavin transport was apparently an energy-independent process with high affinity and low capacity. Values of the saturable component and its apparent constants, Km and Jmax, did not differ in normal and de-energized enterocytes. At 20 min incubation, saturable [3H]-riboflavin transport was a strictly energy-dependent process in which values of the saturable component were significantly greater in normal than in de-energized enterocytes. Km values did not differ in the two types of cells and were unmodified over 3 min, whereas in normal enterocytes, Jmax at 20 min [6.25 +/- 0.2 pmol/(mg protein. 20 min)] was significantly greater than at 3 min [2.67 +/- 0.33 pmol/(mg protein. 3 min)] and compared with de-energized enterocytes at 20 min [2.54 +/- 0.16 pmol/(mg protein. 20 min)]. Both membrane and intracellular events were inhibited by unlabeled riboflavin and analogs, which are good substrates for flavokinase, thus demonstrating the paramount role of this enzyme in riboflavin intestinal transport.  (+info)

Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. (2/773)

The vacuolar ATPase subunit A structural gene VMA1 of the biotechnologically important riboflavin overproducer Ashbya gossypii was cloned and disrupted to prevent riboflavin retention in the vacuolar compartment and to redirect the riboflavin flux into the medium. Cloning was achieved by polymerase chain reaction using oligonucleotide primers derived form conserved sequences of the Vma1 proteins from yeast and filamentous fungi. The deduced polypeptide comprises 617 amino acids with a calculated molecular mass of 67.8 kDa. The deduced amino acid sequence is highly similar to that of the catalytic subunits of Saccharomyces cerevisiae (67 kDa), Candida tropicalis (67 kDa), and Neurospora crassa (67 kDa) with 89, 87, and 60% identity, respectively, and shows about 25% identity to the beta-subunit of the FoF1-ATPase of S. cerevisiae and Schizosaccharomyces pombe. In contrast to S. cerevisiae, however, where disruption of the VMA1 gene was conditionally lethal, and to N. crassa, where viable disruptants could not be isolated, disruption of the VMA1 gene in A. gossypii did not cause a lethal phenotype. Disruption of the AgVMA1 gene led to complete excretion of riboflavin into the medium instead of retention in the vacuolar compartment, as observed in the wild type.  (+info)

Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells. (3/773)

PURPOSE: The loss of corneal endothelial cells associated with aging and possibly other causes has been speculated to be related to exposure to reactive oxygen species (ROS). The current study was conducted to investigate, by use of photosensitizers, the underlying mechanisms involved in the death of bovine corneal endothelial cells (BCENs) caused by ROS. METHODS: BCEN cells in primary culture were treated with a photosensitizer (riboflavin or rose bengal) with light exposure. The patterns of cell damage and death were assessed using an acridine orange-ethidium bromide differential staining method, TdT-mediated dUTP nick-end labeling (TUNEL) assay, and transmission electron microscopy. The cytotoxicity was assayed by mitochondrial function using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) testing. Antioxidants, including catalase, L-histidine, salicylic acid, and superoxide dismutase, were used to determine the types of ROS involved. Activation of nuclear factor (NF)-kappaB was examined by fluorescent immunocytochemistry with anti-p65 antibody. RESULTS: Light-irradiated riboflavin or rose bengal resulted in a significant decrease in viability of BCEN cells. Chromosomal condensation and fragmentation were observed in apoptotic cells, and membrane lysis and damage of cell ultrastructures were observed in necrotic cells. Riboflavin induced apoptosis at 30 minutes and thereafter and induced necrosis after 2 hours. Rose bengal was shown to cause similar effects within half the time required for the effects of riboflavin. Catalase and salicylic acid were found to provide protection for BCENs from cytotoxic effects of riboflavin, and L-histidine was found to protect BCENs from cytotoxicity induced by rose bengal. Kinetic studies using immunocytochemistry showed that NF-kappaB was translocated into the nucleus within 15 minutes and 30 minutes after treatment with rose bengal and riboflavin, respectively. CONCLUSIONS: The cytotoxic effects of photo-irradiated riboflavin and rose bengal are shown to be mediated by two distinct but parallel pathways, one leading to apoptosis and the other to necrosis. Possible involvement of NF-kappaB in cell death is suggested. These findings provide potential leads for future investigation into the molecular mechanisms of loss of corneal endothelial cells related to aging, oxidative stress, and possibly other similar causes.  (+info)

Vitamin dificiencies and neural tube defects. (4/773)

Serum folate, red cell folate, white blood cell vitamin C, riboflavin saturation index, and serum vitamin A were determined during the first trimester of pregnancy in over 900 cases. For each of these there was a social classes I + II showed the highest levels which differed significantly from other classes, except for serum folate. In 6 mothers who gave birth to infants with neural tube defects, first trimester serum folate, red cell folate, white blood cell vitamin C, and riboflavin values were lower than in controls. In spite of small numbers the differences were significant for red cell folate (P less than 0-001) and white blood cell vitamin C (P less than 0-05). These findings are compatible with the hypothesis that nutritional deficiencies are significant in the causation of congenital defects of the neural tube in man.  (+info)

Anti-mitochondrial flavoprotein autoantibodies of patients with myocarditis and dilated cardiomyopathy (anti-M7): interaction with flavin-carrying proteins, effect of vitamin B2 and epitope mapping. (5/773)

Vitamin B2 and flavin cofactors are transported tightly bound to immunoglobulin in human serum. We reasoned that anti-mitochondrial flavoprotein autoantibodies (alpha Fp-AB) present in the serum of patients with myocarditis and cardiomyopathy of unknown aetiology may form immunoglobulin aggregates with these serum proteins. However, immunodiffusion and Western blot assays demonstrated that the flavin-carrying proteins were not recognized by alpha Fp-AB. Apparently the flavin moiety in the native protein conformation was inaccessible to alpha Fp-AB. This conclusion was supported by the absence of an immunoreaction between the riboflavin-binding protein from egg white and alpha FP-AB. Intravenous application of vitamin B2 to rabbits immunized with 6-hydroxy-D-nicotine oxidase, a bacterial protein carrying covalently attached FAD, did not neutralize alpha Fp-AB which had been raised in the serum of the animals. FAD-carrying peptides generated from 6-hydroxy-D-nicotine oxidase by trypsin and chymotrypsin treatment were not recognized by the alpha Fp-AB, but those generated by endopeptidase Lys were. This demonstrates that the epitope recognized by alpha Fp-AB comprises, besides the flavin moiety, protein secondary structure elements.  (+info)

Riboflavin and riboflavin-derived cofactors in adolescent girls with anorexia nervosa. (6/773)

BACKGROUND: Thyroid hormones, riboflavin, riboflavin cofactors, and organic acids were assessed in girls with anorexia nervosa. OBJECTIVE: The objective was to examine the effect of malnutrition and low thyroid hormone concentrations on erythrocyte and plasma riboflavin metabolism and their relation with urinary organic acid excretion. DESIGN: Seventeen adolescent girls with anorexia nervosa [body mass index (BMI; in kg/m2): 14.8 +/- 2.2] and 17 age-matched, healthy girls (control subjects; BMI: 20.5 +/- 2.2) took part in the feeding study. Erythrocyte and plasma riboflavin as well as riboflavin cofactors (flavin mononucleotide and flavin adenine dinucleotide) were assessed by HPLC, whereas urinary organic acids were assessed by gas chromatography-mass spectrometry. RESULTS: Anorectic patients who began a feeding program had higher erythrocyte riboflavin (3.5 +/- 2.2 compared with <0.1 nmol/mol hemoglobin; P < 0.001), lower plasma flavin adenine dinucleotide (57.8 +/- 18.5 compared with 78.5 +/- 54.3 nmol/L; P < 0.05), and higher urinary ethylmalonic acid (7.12 +/- 4.39 compared with 1.3 +/- 2.8 micromol/mmol creatinine; P < 0.001) and isovalerylglycine (7.65 +/- 4.78 compared with 3.8 +/- 0.9 micromol/mmol creatinine; P < 0.05) concentrations than did control subjects. Triiodothyronine concentrations were low and negatively correlated with plasma riboflavin concentrations (r = -0.69, P < 0.01). Not all patients showed improvements in these biochemical indexes after 30 d of refeeding. CONCLUSIONS: The low triiodothyronine concentrations observed in anorexia nervosa could alter the extent of riboflavin conversion into cofactors, thus leading to high erythrocyte riboflavin concentrations, low plasma flavin adenine dinucleotide concentrations, and high rates of ethylmalonic acid and isovalerylglycine excretion.  (+info)

The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. (7/773)

A 3.5 kb EcoRI-BamHI fragment of Bacillus subtilis chromosomal DNA carrying the ribR gene, involved in regulation of the B. subtilis riboflavin operon, was cloned in the B. subtilis-Escherichia coli shuttle vector pCB20. DNA sequence analysis of this fragment revealed several ORFs, one of which encodes a polypeptide of 230 amino acids with up to 45% sequence identity with FAD synthetases from a number of micro-organisms, such as Corynebacterium ammoniagenes, E. coli and Pseudomonas fluorescens, and also to the ribC gene product of B. subtilis. The ribR gene was amplified by PCR, cloned and expressed in E. coli. Measurement of flavokinase activity in cell extracts demonstrated that ribR encodes a monofunctional flavokinase which converts riboflavin into FMN but not to FAD, and is specific for the reduced form of riboflavin.  (+info)

Function of coenzyme F420 in aerobic catabolism of 2,4, 6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. (8/773)

2,4,6-Trinitrophenol (picric acid) and 2,4-dinitrophenol were readily biodegraded by the strain Nocardioides simplex FJ2-1A. Aerobic bacterial degradation of these pi-electron-deficient aromatic compounds is initiated by hydrogenation at the aromatic ring. A two-component enzyme system was identified which catalyzes hydride transfer to picric acid and 2,4-dinitrophenol. Enzymatic activity was dependent on NADPH and coenzyme F420. The latter could be replaced by an authentic preparation of coenzyme F420 from Methanobacterium thermoautotrophicum. One of the protein components functions as a NADPH-dependent F420 reductase. A second component is a hydride transferase which transfers hydride from reduced coenzyme F420 to the aromatic system of the nitrophenols. The N-terminal sequence of the F420 reductase showed high homology with an F420-dependent NADP reductase found in archaea. In contrast, no N-terminal similarity to any known protein was found for the hydride-transferring enzyme.  (+info)