The role of homophilic binding in anti-tumor antibody R24 recognition of molecular surfaces. Demonstration of an intermolecular beta-sheet interaction between vh domains. (1/3140)

The murine antibody R24 and mouse-human Fv-IgG1(kappa) chimeric antibody chR24 are specific for the cell-surface tumor antigen disialoganglioside GD3. X-ray diffraction and surface plasmon resonance experiments have been employed to study the mechanism of "homophilic binding," in which molecules of R24 recognize and bind to other molecules of R24 though their heavy chain variable domains. R24 exhibits strong binding to liposomes containing disialoganglioside GD3; however, the kinetics are unusual in that saturation of binding is not observed. The binding of chR24 to GD3-bearing liposomes is significantly weaker, suggesting that cooperative interactions involving antibody constant regions contribute to R24 binding of membrane-bound GD3. The crystal structures of the Fabs from R24 and chR24 reveal the mechanism for homophilic binding and confirm that the homophilic and antigen-binding idiotopes are distinct. The homophilic binding idiotope is formed largely by an anti-parallel beta-sheet dimerization between the H2 complementarity determining region (CDR) loops of two Fabs, while the antigen-binding idiotope is a pocket formed by the three CDR loops on the heavy chain. The formation of homophilic dimers requires the presence of a canonical conformation for the H2 CDR in conjunction with participation of side chains. The relative positions of the homophilic and antigen-binding sites allows for a lattice of GD3-specific antibodies to be constructed, which is stabilized by the presence of the cell membrane. This model provides for the selective recognition by R24 of cells that overexpress GD3 on the cell surface.  (+info)

A soluble form of the avian hepatitis B virus receptor. Biochemical characterization and functional analysis of the receptor ligand complex. (2/3140)

Avian hepatitis B virus infection is initiated by the specific interaction of the extracellular preS part of the large viral envelope protein with carboxypeptidase D (gp180), the primary cellular receptor. To functionally and biochemically characterize this interaction, we purified a soluble form of duck carboxypeptidase D from a baculovirus expression system, confirmed its receptor function, and investigated the contribution of different preS sequence elements to receptor binding by surface plasmon resonance analysis. We found that preS binds duck carboxypeptidase D with a 1:1 stoichiometry, thereby inducing conformational changes but not oligomerization. The association constant of the complex was determined to be 2.2 x 10(7) M-1 at 37 degreesC, pH 7.4, with an association rate of 4.0 x 10(4) M-1 s-1 and a dissociation rate of 1.9 x 10(-3) s-1, substantiating high affinity interaction of avihepadnaviruses with their receptor carboxypeptidase D. The separately expressed receptor-binding domain, comprising about 50% of preS as defined by mutational analysis, exhibits similar constants. The domain consists of an essential element, probably responsible for the initial receptor contact and a part that contributes to complex stabilization in a conformation sensitive manner. Together with previous results from cell biological studies these data provide new insights into the initial step of hepadnaviral infection.  (+info)

The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. (3/3140)

The L1 major capsid protein of human papillomavirus (HPV) type 11, a 55-kDa polypeptide, forms particulate structures resembling native virus with an average particle diameter of 50-60 nm when expressed in the yeast Saccharomyces cerevisiae. We show in this report that these virus-like particles (VLPs) interact with heparin and with cell-surface glycosaminoglycans (GAGs) resembling heparin on keratinocytes and Chinese hamster ovary cells. The binding of VLPs to heparin is shown to exhibit an affinity comparable to that of other identified heparin-binding proteins. Immobilized heparin chromatography and surface plasmon resonance were used to show that this interaction can be specifically inhibited by free heparin and dextran sulfate and that the effectiveness of the inhibitor is related to its molecular weight and charge density. Sequence comparison of nine human L1 types revealed a conserved region of the carboxyl terminus containing clustered basic amino acids that bear resemblance to proposed heparin-binding motifs in unrelated proteins. Specific enzymatic cleavage of this region eliminated binding to both immobilized heparin and human keratinocyte (HaCaT) cells. Removal of heparan sulfate GAGs on keratinocytes by treatment with heparinase or heparitinase resulted in an 80-90% reduction of VLP binding, whereas treatment of cells with laminin, a substrate for alpha6 integrin receptors, provided minimal inhibition. Cells treated with chlorate or substituted beta-D-xylosides, resulting in undersulfation or secretion of GAG chains, also showed a reduced affinity for VLPs. Similarly, binding of VLPs to a Chinese hamster ovary cell mutant deficient in GAG synthesis was shown to be only 10% that observed for wild type cells. This report establishes for the first time that the carboxyl-terminal portion of HPV L1 interacts with heparin, and that this region appears to be crucial for interaction with the cell surface.  (+info)

Cluster of differentiation antigen 4 (CD4) endocytosis and adaptor complex binding require activation of the CD4 endocytosis signal by serine phosphorylation. (4/3140)

Cluster of differentiation antigen 4 (CD4), the T lymphocyte antigen receptor component and human immunodeficiency virus coreceptor, is down-modulated when cells are activated by antigen or phorbol esters. During down-modulation CD4 dissociates from p56(lck), undergoes endocytosis through clathrin-coated pits, and is then sorted in early endosomes to late endocytic organelles where it is degraded. Previous studies have suggested that phosphorylation and a dileucine sequence are required for down-modulation. Using transfected HeLa cells, in which CD4 endocytosis can be studied in the absence of p56(lck), we show that the dileucine sequence in the cytoplasmic domain is essential for clathrin-mediated CD4 endocytosis. However, this sequence is only functional as an endocytosis signal when neighboring serine residues are phosphorylated. Phosphoserine is required for rapid endocytosis because CD4 molecules in which the cytoplasmic domain serine residues are substituted with glutamic acid residues are not internalized efficiently. Using surface plasmon resonance, we show that CD4 peptides containing the dileucine sequence bind weakly to clathrin adaptor protein complexes 2 and 1. The affinity of this interaction is increased 350- to 700-fold when the peptides also contain phosphoserine residues.  (+info)

Purified meningococcal transferrin-binding protein B interacts with a secondary, strain-specific, binding site in the N-terminal lobe of human transferrin. (5/3140)

Neisseria meningitidis, grown in iron-limited conditions, produces two transferrin-binding proteins (TbpA and TbpB) that independently and specifically bind human serum transferrin (hTF) but not bovine serum transferrin (bTF). We have used surface plasmon resonance to characterize the interaction between individual TbpA and TbpB and a series of full-length human-bovine chimaeric transferrins (hbTFs) under conditions of variable saturation with iron. A comparative analysis of hTF and hbTF chimaera-binding data confirmed that the major features involved in Tbp binding are located in the C-terminal lobe of hTF and that isolated TbpA can recognize distinct sites present in, or conformationally influenced by, residues 598-679. Binding by TbpB was maintained at a significant but decreased level after replacement of the entire hTF C-terminal lobe by the equivalent bovine sequence. The extent of this binding difference was dependent on the meningococcal strain and on the presence of hTF residues 255-350. This indicated that TbpB from strain SD has a secondary, strain-specific, binding site located within this region, whereas TbpB from strain B16B6 does not share this recognition site. Binding of TbpA was influenced primarily by sequence substitutions in the hTF C-terminal lobe, and co-purified TbpA and TbpB (TbpA+B) was functionally distinct from either of its components. The limited divergence between hTF and bTF has been related to observed differences in binding by Tbps and has been used to delineate those regions of hTF that are important for such interactions.  (+info)

Kinetics of the interaction of endotoxin with polymyxin B and its analogs: a surface plasmon resonance analysis. (6/3140)

Lipopolysaccharide, the invariant structural component of Gram-negative bacteria, when present in minute amounts in the circulation in humans elicits 'endotoxic shock' syndrome, which is fatal in 60% of the cases. Polymyxin B (PMB), a cyclic cationic peptide, neutralizes the endotoxin, but also induces many harmful side effects. Many peptide-based drugs mimicking the activity of PMB have been synthesized in an attempt to reduce toxicity while still retaining the anti-endotoxic activity. The study attempts to use the recent technique of surface plasmon resonance (SPR), in determining the kinetics of association and dissociation involved in the interaction of endotoxin with a few selected peptides that have structural features resembling PMB. The results, in conjunction with the thermodynamic data derived using isothermal titration calorimetry (ITC), stress the vital role played by amphiphilicity of the peptides and hydrophobic forces in this biologically important interaction.  (+info)

Interaction of human macrophage C-type lectin with O-linked N-acetylgalactosamine residues on mucin glycopeptides. (7/3140)

A fluorescein-labeled synthetic peptide, PTTTPITTTTK, was converted into O-glycosylated glycopeptides with various numbers of attached N-acetyl-D-galactosamines (GalNAcs) by in vitro glycosylation with UDP-GalNAc and a microsomal fraction of LS174T human colon carcinoma cells. Glycopeptides with 1, 3, 5, and 6 GalNAc residues (G1, G3, G5, and G6) were obtained, and their sizes were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Their sequences were determined by a peptide sequencer to be PTTTGalNAcPITTTTK for G1, PTGalNAcTTPITGalNAcTGalNAcTTK for G3, PTTGalNAcTGalNAcPITGalNAcTGalNAcTGalNAcTK for G5, and PTGalNAcTGalNAcTGalNAcPITGalNAcTGalNAcTGalNAcTK for G6. A calcium-type human macrophage lectin (HML) was prepared in a recombinant form, and its interaction with these glycopeptides was investigated by surface plasmon resonance (SPR) spectroscopy and fluorescence polarization. The affinity of recombinant HML (rHML) for immobilized glycopeptides increased, as revealed by SPR, in parallel with the number of GalNAc. The highest affinity was obtained when the G6-peptide was immobilized at high density. Fluorescence polarization equilibrium-binding assays also revealed that the affinity of rHML for soluble gly-copeptides increased, depending on the number of attached GalNAcs. Carbohydrate recognition domain (CRD) fragments of HML were prepared, and their affinity for these four glycopeptides was also determined, this affinity was apparently lower than that of rHML. Affinity constants of rHML for the G3- and G5-peptides were 11- and 38-fold higher, respectively, than for the G1-peptide, whereas those of CRD fragments were only 2- and 6-fold higher, respectively. A chemical cross-linking study revealed that rHML but not recombinant CRD forms trimers in an aqueous solution. Thus, preferential binding of densely glycosylated O-linked glycopeptides should be due to the trimer formation of rHML.  (+info)

Effects of microcystins on phosphorylase-a binding to phosphatase-2A: kinetic analysis by surface plasmon resonance biosensor. (8/3140)

Cyclic heptapeptide microcystins are a group of hepatoxicants which exert the cytotoxic effects by inhibiting the catalytic activities of phosphatase-2A (PP-2A) and phosphatase-1 (PP-1) and thus disrupt the normal signal transduction pathways. Microcystins interact with PP-2A and PP-1 by a two-step mechanism involving rapid binding and inactivation of protein phosphatase catalytic subunit, followed by a slower covalent interaction. It was proposed that inactivation of PP-2A/PP-1 catalytic activity by microcystins precedes covalent adduct formation. In this study, we used a biosensor based on surface plasmon resonance (SPR) to examine the effects of three microcystins, MCLR, MCRR and MCYR, on the binding between PP-2A and its substrate, phosphorylase-a (PL-a), during the first step of the interaction. The SPR biosensor provides real-time information on the association and dissociation kinetics of PL-a with immobilized PP-2A in the absence and presence of microcystins. It was found that the affinity of PL-a to microcystin-bound PP-2A was four times smaller compared to unbound PP-2A, due to 50% decreases in the association rates and two-fold increases in dissociation rates of PL-a binding to PP-2A. The results suggest that the rapid binding of microcystins to the PP-2A catalytic site leads to the formation of a noncovalent microcystin/PP-2A adduct. While the adduct formation fully inhibits the catalytic activity of PP-2A, it only results in partial inhibition of the substrate binding. The similar effects of the three microcystins on PP-2A suggest that the toxins bind to PP-2A at the same site and cause similar conformational changes. The present work also demonstrates the potential application of biosensor technology in environmental toxicological research.  (+info)