The effect of face inversion on activity in human neural systems for face and object perception. (1/5692)

The differential effect of stimulus inversion on face and object recognition suggests that inverted faces are processed by mechanisms for the perception of other objects rather than by face perception mechanisms. We investigated the face inversion using functional magnetic resonance imaging (fMRI). The principal effect of face inversion on was an increased response in ventral extrastriate regions that respond preferentially to another class of objects (houses). In contrast, house inversion did not produce a similar change in face-selective regions. Moreover, stimulus inversion had equivalent, minimal effects for faces in in face-selective regions and for houses in house-selective regions. The results suggest that the failure of face perception systems with inverted faces leads to the recruitment of processing resources in object perception systems, but this failure is not reflected by altered activity in face perception systems.  (+info)

Impairment in preattentive visual processing in patients with Parkinson's disease. (2/5692)

We explored the possibility of whether preattentive visual processing is impaired in Parkinson's disease. With this aim, visual discrimination thresholds for orientation texture stimuli were determined in two separate measurement sessions in 16 patients with idiopathic Parkinson's disease. The results were compared with those of 16 control subjects age-matched and 16 young healthy volunteers. Discrimination thresholds were measured in a four-alternative spatial forced-choice paradigm, in which subjects judged the location of a target embedded in a background of distractors. Four different stimulus configurations were employed: (i) a group of vertical targets among horizontal distractors ('vertical line targets'); (ii) targets with varying levels of orientation difference on a background of spatially filtered vertically oriented noise ('Gaussian filtered noise'); (iii) one 'L' among 43 '+' signs ('texton'), all of which assess preattentive visual processing; and (iv) control condition, of one 'L' among 43 'T' distractors ('non-texton' search target), which reflects attentive visual processing. In two of the preattentive tasks (filtered noise and texton), patients with Parkinson's disease required significantly greater orientation differences and longer stimulus durations, respectively. In contrast, their performance in the vertical line target and non-texton search target was comparable to that of the matched control subjects. These differences were more pronounced in the first compared with the second session. Duration of illness and age within the patient group correlated significantly with test performance. In all conditions tested, the young control subjects performed significantly better than the more elderly control group, further indicating an effect of age on this form of visual processing. The results suggest that, in addition to the well documented impairment in retinal processing, idiopathic Parkinson's disease is associated with a deficit in preattentive cortical visual processing.  (+info)

Accurate memory for colour but not pattern contrast in chicks. (3/5692)

The visual displays of animals and plants often look dramatic and colourful to us, but what information do they convey to their intended, non-human, audience [1] [2]? One possibility is that stimulus values are judged accurately - so, for example, a female might choose a suitor if he displays a specific colour [3]. Alternatively, as for human advertising, displays may attract attention without giving information, perhaps by exploiting innate preferences for bright colours or symmetry [2] [4] [5]. To address this issue experimentally, we investigated chicks' memories of visual patterns. Food was placed in patterned paper containers which, like seed pods or insect prey, must be manipulated to extract food and their patterns learnt. To establish what was learnt, birds were tested on familiar stimuli and on alternative stimuli of differing colour or contrast. For colour, birds selected the trained stimulus; for contrast, they preferred high contrast patterns over the familiar. These differing responses to colour and contrast show how separate components of display patterns could serve different roles, with colour being judged accurately whereas pattern contrast attracts attention.  (+info)

Integration of proprioceptive and visual position-information: An experimentally supported model. (4/5692)

To localize one's hand, i.e., to find out its position with respect to the body, humans may use proprioceptive information or visual information or both. It is still not known how the CNS combines simultaneous proprioceptive and visual information. In this study, we investigate in what position in a horizontal plane a hand is localized on the basis of simultaneous proprioceptive and visual information and compare this to the positions in which it is localized on the basis of proprioception only and vision only. Seated at a table, subjects matched target positions on the table top with their unseen left hand under the table. The experiment consisted of three series. In each of these series, the target positions were presented in three conditions: by vision only, by proprioception only, or by both vision and proprioception. In one of the three series, the visual information was veridical. In the other two, it was modified by prisms that displaced the visual field to the left and to the right, respectively. The results show that the mean of the positions indicated in the condition with both vision and proprioception generally lies off the straight line through the means of the other two conditions. In most cases the mean lies on the side predicted by a model describing the integration of multisensory information. According to this model, the visual information and the proprioceptive information are weighted with direction-dependent weights, the weights being related to the direction-dependent precision of the information in such a way that the available information is used very efficiently. Because the proposed model also can explain the unexpectedly small sizes of the variable errors in the localization of a seen hand that were reported earlier, there is strong evidence to support this model. The results imply that the CNS has knowledge about the direction-dependent precision of the proprioceptive and visual information.  (+info)

Orientation-tuned spatial filters for texture-defined form. (5/5692)

Detection threshold for an orientation-texture-defined (OTD) test grating was elevated after adapting to an OTD grating of high orientation contrast. Threshold elevation was greatest for a test grating parallel to the adapting grating, and fell to zero for a test grating perpendicular to the adapting grating. We conclude that the human visual system contains an orientation-tuned neural mechanism sensitive to OTD form, and propose a model for this mechanism. We further propose that orientation discrimination for OTD bars and gratings is determined by the relative activity of these filters for OTD form.  (+info)

Monocular occlusion cues alter the influence of terminator motion in the barber pole phenomenon. (6/5692)

The influence of monocular occlusion cues on the perceived direction of motion of barber pole patterns is examined. Unlike previous studies that have emphasized the importance of binocular disparity, we find that monocular cues strongly influence the perceived motion direction and can even override binocular depth cues. The difference in motion bias for occluders with and without disparity cues is relatively small. Additionally, although 'T-junctions' aligned with occluders are particularly important, they are not strictly necessary for creating a change in motion perception. Finally, the amount of motion bias differs for several stimulus configurations, suggesting that the extrinsic/intrinsic classification of terminators is not all-or-none.  (+info)

Local velocity representation: evidence from motion adaptation. (7/5692)

Adaptation to a moving visual pattern induces shifts in the perceived motion of subsequently viewed moving patterns. Explanations of such effects are typically based on adaptation-induced sensitivity changes in spatio-temporal frequency tuned mechanisms (STFMs). An alternative hypothesis is that adaptation occurs in mechanisms that independently encode direction and speed (DSMs). Yet a third possibility is that adaptation occurs in mechanisms that encode 2D pattern velocity (VMs). We performed a series of psychophysical experiments to examine predictions made by each of the three hypotheses. The results indicate that: (1) adaptation-induced shifts are relatively independent of spatial pattern of both adapting and test stimuli; (2) the shift in perceived direction of motion of a plaid stimulus after adaptation to a grating indicates a shift in the motion of the plaid pattern, and not a shift in the motion of the plaid components; and (3) the 2D pattern of shift in perceived velocity radiates away from the adaptation velocity, and is inseparable in speed and direction of motion. Taken together, these results are most consistent with the VM adaptation hypothesis.  (+info)

Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms. (8/5692)

The post-receptoral mechanisms that mediate detection of stimuli in the (delta L/L, delta M/M) plane of color space were characterized using noise masking. Chromatic masking noises of different chromaticities and spatial configurations were used, and threshold contours for the detection of Gaussian and Gabor tests were measured. The results do not show masking that is narrowly-selective for the chromaticity of the noise. On the contrary, our findings suggest that detection of these tests is mediated only by an opponent chromatic mechanism (a red-green mechanism) and a non-opponent luminance mechanism. These results are not consistent with the hypothesis of multiple chromatic mechanisms mediating detection in this color plane [1].  (+info)