Cell type-specific ATP-activated responses in rat dorsal root ganglion neurons. (1/230)

1. The aim of our study is to clarify the relationship between expression pattern of P2X receptors and the cell type of male adult rat (Wistar) dorsal root ganglion (DRG) neurons. We identified the nociceptive cells of acutely dissociated DRG neurons from adult rats type using capsaicin sensitivity. 2. Two types of ATP-activated currents, one with fast, the other with slow desensitization, were found under voltage-clamp conditions. In addition, cells with fast but not slow desensitization responded to capsaicin, indicating that there was a relationship between current kinetics and capsaicin-sensitivity. 3. Both types of neurons were responsive to ATP and alpha, beta methylene-ATP (alpha,betameATP). The concentration of alpha,(beta)meATP producing half-maximal activation (EC50) of neurons with fast desensitization was less (11 microM) than that of neurons with slow desensitization (63 microM), while the Hill coefficients were similar. Suramin and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid tetrasodium (PPADS) antagonized alpha,betameATP-induced currents in both types of neurons. 4. In situ hybridization revealed that small cells of the DRG predominantly expressed mRNAs of P2X3 and medium-sized cells expressed mRNAs of P2X2 and P2X3. In contrast, both of mRNAs were not detected in large cells of the DRG. 5. These results suggest that capsaicin-sensitive, small-sized DRG neurons expressed mainly the homomeric P2X3 subunit and that capsaicin-insensitive, medium-sized DRG neurons expressed the heteromultimeric receptor with P2X2 and P2X3.  (+info)

Single channel properties of P2X2 purinoceptors. (2/230)

The single channel properties of cloned P2X2 purinoceptors expressed in human embryonic kidney (HEK) 293 cells and Xenopus oocytes were studied in outside-out patches. The mean single channel current-voltage relationship exhibited inward rectification in symmetric solutions with a chord conductance of approximately 30 pS at -100 mV in 145 mM NaCl. The channel open state exhibited fast flickering with significant power beyond 10 kHz. Conformational changes, not ionic blockade, appeared responsible for the flickering. The equilibrium constant of Na+ binding in the pore was approximately 150 mM at 0 mV and voltage dependent. The binding site appeared to be approximately 0.2 of the electrical distance from the extracellular surface. The mean channel current and the excess noise had the selectivity: K+ > Rb+ > Cs+ > Na+ > Li+. ATP increased the probability of being open (Po) to a maximum of 0.6 with an EC50 of 11.2 microM and a Hill coefficient of 2.3. Lowering extracellular pH enhanced the apparent affinity of the channel for ATP with a pKa of approximately 7.9, but did not cause a proton block of the open channel. High pH slowed the rise time to steps of ATP without affecting the fall time. The mean single channel amplitude was independent of pH, but the excess noise increased with decreasing pH. Kinetic analysis showed that ATP shortened the mean closed time but did not affect the mean open time. Maximum likelihood kinetic fitting of idealized single channel currents at different ATP concentrations produced a model with four sequential closed states (three binding steps) branching to two open states that converged on a final closed state. The ATP association rates increased with the sequential binding of ATP showing that the binding sites are not independent, but positively cooperative. Partially liganded channels do not appear to open. The predicted Po vs. ATP concentration closely matches the single channel current dose-response curve.  (+info)

Differential modulation by copper and zinc of P2X2 and P2X4 receptor function. (3/230)

Differential Modulation by Copper and Zinc of P2X2 and P2X4 Receptor Function. The modulation by Cu2+ and Zn2+ of P2X2 and P2X4 receptors expressed in Xenopus oocytes was studied with the two-electrode, voltage-clamp technique. In oocytes expressing P2X2 receptors, both Cu2+ and Zn2+, in the concentration range 1-130 microM, reversibly potentiated current activated by submaximal concentrations of ATP. The Cu2+ and Zn2+ concentrations that produced 50% of maximal potentiation (EC50) of current activated by 50 microM ATP were 16.3 +/- 0.9 (SE) microM and 19.6 +/- 1.5 microM, respectively. Cu2+ and Zn2+ potentiation of ATP-activated current was independent of membrane potential between -80 and +20 mV and did not involve a shift in the reversal potential of the current. Like Zn2+, Cu2+ increased the apparent affinity of the receptor for ATP, as evidenced by a parallel shift of the ATP concentration-response curve to the left. However, Cu2+ did not enhance ATP-activated current in the presence of a maximally effective concentration of Zn2+, suggesting a common site or mechanism of action of Cu2+ and Zn2+ on P2X2 receptors. For the P2X4 receptor, Zn2+, from 0.5 to 20 microM enhanced current activated by 5 microM ATP with an EC50 value of 2.4 +/- 0.2 microM. Zn2+ shifted the ATP concentration-response curve to the left in a parallel manner, and potentiation by Zn2+ was voltage independent. By contrast, Cu2+ in a similar concentration range did not affect ATP-activated current in oocytes expressing P2X4 receptors, and Cu2+ did not alter the potentiation of ATP-activated current produced by Zn2+. The results suggest that Cu2+ and Zn2+ differentially modulate the function of P2X2 and P2X4 receptors, perhaps because of differences in a shared site of action on both subunits or the absence of a site for Cu2+ action on the P2X4 receptor.  (+info)

Identification of a domain involved in ATP-gated ionotropic receptor subunit assembly. (4/230)

P2X receptors are ATP-gated ion channels found in a variety of tissues and cell types. Seven different subunits (P2X(1)-P2X(7)) have been molecularly cloned and are known to form homomeric, and in some cases heteromeric, channel complexes. However, the molecular determinants leading to the assembly of subunits into P2X receptors are unknown. To address this question we utilized a co-immunoprecipitation assay in which epitope-tagged deletion mutants and chimeric constructs were examined for their ability to co-associate with full-length P2X subunits. Deletion mutants of the P2X(2) receptor subunit were expressed individually and together with P2X(2) or P2X(3) receptor subunits in HEK 293 cells. Deletion of the amino terminus up to the first transmembrane domain (amino acid 28) and beyond (to amino acid 51) did not prevent subunit assembly. Analysis of the carboxyl terminus demonstrated that mutants missing the portion of the protein downstream of the second transmembrane domain could also still co-assemble. However, a mutant terminating 25 amino acids before the second transmembrane domain could not assemble with other subunits or itself, implicating the missing region of the protein in assembly. This finding was supported and extended by data utilizing a chimera strategy that indicated TMD2 is a critical determinant of P2X subunit assembly.  (+info)

Allosteric control of gating and kinetics at P2X(4) receptor channels. (5/230)

The CNS abundantly expresses P2X receptor channels for ATP; of these the most widespread in the brain is the P2X(4) channel. We show that ivermectin (IVM) is a specific positive allosteric effector of heterologously expressed P2X(4) and possibly of heteromeric P2X(4)/P2X(6) channels, but not of P2X(2), P2X(3), P2X(2)/P2X(3,) or P2X(7) channels. In the submicromolar range (EC(50,) approximately 250 nM) the action of IVM was rapid and reversible, resulting in increased amplitude and slowed deactivation of P2X(4) channel currents evoked by ATP. IVM also markedly increased the potency of ATP and that of the normally low-potency agonist alpha, beta-methylene-ATP in a use- and voltage-independent manner without changing the ion selectivity of P2X(4) channels. Therefore, IVM evokes a potent pharmacological gain-of-function phenotype that is specific for P2X(4) channels. We also tested whether IVM could modulate endogenously expressed P2X channels in the adult trigeminal mesencephalic nucleus and hippocampal CA1 neurons. Surprisingly, IVM produced no significant effect on the fast ATP-evoked inward currents in either type of neuron, despite the fact that IVM modulated P2X(4) channels heterologously expressed in embryonic hippocampal neurons. These results suggest that homomeric P2X(4) channels are not the primary subtype of P2X receptor in the adult trigeminal mesencephalic nucleus and in hippocampal CA1 neurons.  (+info)

Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. (6/230)

Extracellular ATP has multimodal actions in the cochlea affecting hearing sensitivity. ATP-gated ion channels involved in this process were characterized in the guinea pig cochlea. Voltage-clamped hair cells exhibited a P2 receptor pharmacology compatible with the assembly of ATP-gated ion channels from P2X(2) receptor subunits. Reverse transcription-PCR experiments confirmed expression of the P2X(2-1) receptor subunit mRNA isoform in the sensory epithelium (organ of Corti); a splice variant that confers desensitization, P2X(2-2), was the predominant subunit isoform expressed by primary auditory neurons. Expression of the ATP-gated ion channel protein was localized using a P2X(2) receptor subunit-specific antiserum. The highest density of P2X(2) subunit-like immunoreactivity in the cochlea occurred on the hair cell stereocilia, which faces the endolymph. Tissues lining this compartment exhibited significant P2X(2) receptor subunit expression, with the exception of the stria vascularis. Expression of ATP-gated ion channels at these sites provides a pathway for the observed ATP-induced reduction in endocochlear potential and likely serves a protective role, decoupling the "cochlear amplifier" in response to stressors, such as noise and ischemia. Within the perilymphatic compartment, immunolabeling on Deiters' cells is compatible with purinergic modulation of cochlear micromechanics. P2X(2) receptor subunit expression was also detected in spiral ganglion primary afferent neurons, and immunoelectron microscopy localized these subunits to postsynaptic junctions at both inner and outer hair cells. The former supports a cotransmitter role for ATP in a subset of type I spiral ganglion neurons, and latter represents the first characterization of a receptor for a fast neurotransmitter associated with the type II spiral ganglion neurons.  (+info)

Rat chromaffin cells lack P2X receptors while those of the guinea-pig express a P2X receptor with novel pharmacology. (7/230)

1. Whole-cell patch-clamp recording was used to determine the functional expression and pharmacological properties of P2X receptors in chromaffin cells dissociated from adrenal medullae of rats and guinea-pigs. 2. In rat chromaffin cells maintained in culture for 1 - 7 days, ATP and UTP failed to evoke any detectable response. 3. Guinea-pig chromaffin cells responded to ATP (100 microM) with a rapidly activating inward current. The amplitude of the response to ATP increased over the period cells were maintained in culture and so did the number of cells giving a detectable response, with 69% of cells responding after >/=4 days of culture. 4. The response to ATP desensitized slowly, and had a reversal potential of 2.5 mV. The EC50 for ATP was 43 microM. The potency order for ATP analogues was 2-MeSATP>ATP>ADP. Adenosine, UTP and alpha,beta-meATP were inactive. 5. Suramin (100 microM) and Cibacron blue (50 microM) inhibited the ATP (100 microM)-activated current by 51 and 47%, respectively. PPADS antagonized the response to ATP (100 microM) with an IC50 of 3.2 microM. 6. The ATP concentration-response curve shifted to the left at pH 6.8 (EC50, 19 microM) and right at pH 8.0 (EC50, 96 microM), without changing the maximal response. Zn2+ inhibited the response to ATP (100 microM) with an IC50 of 48 microM. 7. This study indicates that expression of ATP-gated cation channels in chromaffin cells is species dependent. The P2X receptors in guinea-pig chromaffin cells show many characteristics of the P2X2 receptor subtype.  (+info)

Modulatory activity of extracellular H+ and Zn2+ on ATP-responses at rP2X1 and rP2X3 receptors. (8/230)

1 The modulatory activity of extracellular H+ and Zn2+ was examined on ATP-responses at rat P2X1 (rP2X1) and rat P2X3 (rP2X3) receptors expressed in Xenopus oocytes and studied under voltage-clamp conditions. 2 Superfused ATP (0.03-30 microM, at pH 7.5) evoked inward currents at rP2X1 receptors (EC50 value, 300+/-7 nM). ATP potency was reduced 2 fold at pH 6.5, and 6 fold at pH 5.5, without altering the maximum ATP effect. Alkaline conditions (pH 8.0) did not alter ATP activity. 3 Superfused ATP (0.01 - 300 microM, at pH 7. 5) evoked inward currents at rP2X3 receptors (EC50 value, 1.8+/-0.3 microM). ATP activity was affected only at pH 5.5, reducing agonist potency 15 fold without altering the maximum ATP effect. 4 Extracellular Zn2+ inhibited ATP-responses at rP2X1 receptors in a time-dependent manner, a 20 min pre-incubation being optimal (IC50 value, 1.0+/-0.2 microM). However, the Zn2+ effect was pH-independent, suggesting Zn2+- and H+-inhibition of ATP-responses occur through independent processes. 5 Extracellular Zn2+ weakly potentiated ATP-responses at rP2X3 receptors (EC50 value, 11+/-1 microM). The Zn2+ effect was dependent on pre-incubation time and, with 20 min pre-incubation periods, Zn2+ potentiated then inhibited ATP-responses in a concentration-dependent, but pH-independent, manner. 6 In summary, ATP activity at rP2X1 receptors was decreased by both extracellular H+ and Zn2+ and their effects were additive. ATP activity at rP2X3 receptors was less sensitive to H+-inhibition and, in contrast, was potentiated by Zn2+ in a pH-independent manner. These differential effects may help distinguish P2X1 and P2X3 receptors in whole tissues.  (+info)