Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. (1/374)

Visual activity is thought to be a critical factor in controlling the development of central retinal projections. Neuronal activity increases cytosolic calcium, which was hypothesized to regulate process outgrowth in neurons. We performed an in vivo imaging study in the retinotectal system of albino Xenopus laevis tadpoles with the fluorescent calcium indicator calcium green 1 dextran (CaGD) to test the role of calcium in regulating axon arbor development. We find that visual stimulus to the retina increased CaGD fluorescence intensity in retinal ganglion cell (RGC) axon arbors within the optic tectum and that branch additions to retinotectal axon arbors correlated with a local rise in calcium in the parent branch. We find three types of responses to visual stimulus, which roughly correlate with the ON, OFF, and SUSTAINED response types of RGC reported by physiological criteria. Imaging in bandscan mode indicated that patterns of calcium transients were nonuniform throughout the axons. We tested whether the increase in calcium in the retinotectal axons required synaptic activity in the retina; intraocular application of tetrodotoxin (10 microM) or nifedipine (1 and 10 microM) blocked the stimulus-induced increase in RGC axonal fluorescence. A second series of pharmacological investigations was designed to determine the mechanism of the calcium elevation in the axon terminals within the optic tectum. Injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM) (20 mM) into the tectal ventricle reduced axonal calcium levels, supporting the idea that visual stimulation increases axonal calcium. Injection of BAPTA (20 mM) into the tectal ventricle to chelate extracellular calcium also attenuated the calcium response to visual stimulation, indicating that calcium enters the axon from the extracellular medium. Caffeine (10 mM) caused a large increase in axonal calcium, indicating that intracellular stores contribute to the calcium signal. Presynaptic nicotinic acetylcholine receptors (nAChRs) may play a role in axon arbor development and the formation of the topographic retinotectal projection. Injection of nicotine (10 microM) into the tectal ventricle significantly elevated RGC axonal calcium levels, whereas application of the nAChR antagonist alphaBTX (100 nM) reduced the stimulus-evoked rise in RGC calcium fluorescence. These data suggest that light stimulus to the retina increases calcium in the axon terminal arbors through a mechanism that includes influx through nAChRs and amplification by calcium-induced calcium release from intracellular calcium stores. Such a mechanism may contribute to developmental plasticity of the retinotectal system by influencing both axon arbor elaboration and the strength of synaptic transmission.  (+info)

Tonic activation of presynaptic GABAB receptors in the opener neuromuscular junction of crayfish. (2/374)

Release of excitatory transmitter from boutons on crayfish nerve terminals was inhibited by (R,S)-baclofen, an agonist at GABAB receptors. Baclofen had no postsynaptic actions as it reduced quantal content without affecting quantal amplitude. The effect of baclofen increased with concentration producing 18% inhibition at 10 microM; EC50, 50% inhibition at 30 microM; maximal inhibition, 85% at 100 microM and higher. There was no desensitization, even with 200 or 320 microM baclofen. Phaclofen, an antagonist at GABAB receptors, competitively antagonized the inhibitory action of baclofen (KD = 50 microM, equivalent to a pA2 = 4.3 +/- 0.1). Phaclofen on its own at concentrations below 200 microM had no effect on release, whereas at 200 microM phaclofen itself increased the control level of release by 60%, as did 2-hydroxy-saclofen (200 microM), another antagonist at GABAB receptors. This increase was evidently due to antagonism of a persistent level of GABA in the synaptic cleft, since the effect was abolished by destruction of the presynaptic inhibitory fiber, using intra-axonal pronase. We conclude that presynaptic GABAB receptors, with a pharmacological profile similar to that of mammalian GABAB receptors, are involved in the control of transmitter release at the crayfish neuromuscular junction.  (+info)

Two components of transmitter release from the chick ciliary presynaptic terminal and their regulation by protein kinase C. (3/374)

1. A study was made of the effects of phorbol ester (phorbol 12-myristate 13-acetate, PMA, 0.1 microM) on the two components of evoked transmitter release, namely the fast synchronous and the slow asynchronous components, from the giant presynaptic terminal of the chick ciliary ganglion. The excitatory postsynaptic currents (EPSCs) were recorded under whole-cell voltage clamp of the postsynaptic neuron. 2. The decay time constant of the slow component was prolonged by replacing Ca2+ with Sr2+. In 5 mM [Sr2+]o the fast component decayed with a time constant of 2.6 +/- 1.4 ms whereas the slow component decayed with a time constant of 19 +/- 7 ms. 3. When stimulated with twin pulses with a short interpulse interval, the fast component of the second EPSC was often depressed whereas the slow component was usually facilitated. Both components were positively dependent on [Sr2+]o in a saturable manner, but the fast component approached its maximum at a lower [Sr2+]o than the slow component. 4. PMA potentiated both the fast and slow components to a similar extent and with a similar time course. For each component, the effect of PMA was less potent at high [Sr2+]o than at low [Sr2+]o. For either the fast or the slow component the PMA-induced potentiation was accompanied by a reduction in the paired-pulse ratio (PPR). 5. Despite the different dissociation constant for dextran-conjugated fura-2, the fluorescent ratio for intraterminal [Sr2+] ([Sr2+]i) decayed to the baseline after the nerve-evoked increment with a time course similar to that for [Ca2+]i, suggesting that intraterminal Sr2+ is buffered less efficiently than Ca2+. PMA did not increase the [Sr2+]i transients produced by stimulation of the presynaptic oculomotor nerve. 6. It is suggested that protein kinase C (PKC) modulates both the fast and slow components through common molecular mechanisms that upregulate the Sr2+ sensitivity of the vesicle fusion probability.  (+info)

GABA(B) receptor isoforms GBR1a and GBR1b, appear to be associated with pre- and post-synaptic elements respectively in rat and human cerebellum. (4/374)

1. Metabotropic gamma-aminobutyric acid (GABA) receptors, GABA(B), are coupled through G-proteins to K+ and Ca2+ channels in neuronal membranes. Cloning of the GABAB receptor has not uncovered receptor subtypes, but demonstrated two isoforms, designated GBR1a and GBR1b, which differ in their N terminal regions. In the rodent cerebellum GABA(B) receptors are localized to a greater extent in the molecular layer, and are reported to exist on granule cell parallel fibre terminals and Purkinje cell (PC) dendrites, which may represent pre- and post-synaptic receptors. 2. The objective of this study was to localize the mRNA splice variants, GBR1a and GBR1b for GABA(B) receptors in rat cerebellum, for comparison with the localization in human cerebellum using in situ hybridization. 3. Receptor autoradiography was performed utilizing [3H]-CGP62349 to localize GABA(B) receptors in rat and human cerebellum. Radioactively labelled oligonucleotide probes were used to localize GBR1a and GBR1b, and by dipping slides in photographic emulsion, silver grain images were obtained for quantification at the cellular level. 4. Binding of 0.5 nM [3H]-CGP62349 demonstrated significantly higher binding to GABA(B) receptors in the molecular layer than the granule cell (GC) layer of rat cerebellum (molecular layer binding 200+/-11% of GC layer; P<0.0001). GBR1a mRNA expression was found to be predominantly in the GC layer (PC layer grains 6+/-6% of GC layer grains; P<0.05), and GBR1b expression predominantly in PCs (PC layer grains 818+/-14% of GC layer grains; P<0.0001). 5. The differential distribution of GBR1a and GBR1b mRNA splice variants for GABA(B) receptors suggests a possible association of GBR1a and GBR1b with pre- and post-synaptic elements respectively.  (+info)

Different subtypes of GABAB receptors are present at pre- and postsynaptic sites within the rat dorsolateral septal nucleus. (5/374)

GABAB receptor activation modulates neuronal activity mediated by multiple CNS transmitters and can occur at pre- and postsynaptic sites. In low concentrations, baclofen acts presynaptically to diminish transmitter release via both hetero- and autoreceptors, whereas at increasing concentrations, the same compound alters postsynaptic membrane excitability by inducing a membrane hyperpolarization. We have utilized electrophysiological techniques in vitro to focus on the possibility that pharmacologically different subtypes of GABAB receptors are present on presynaptic sites of glutamatergic terminals when compared with GABAB receptors on postsynaptic sites within the dorsolateral septal nucleus (DLSN). The glutamatergic terminal within the DLSN originates from a pyramidal cell body located within the hippocampus and most likely terminates on a GABAergic neuron from which recordings were made. Whole cell patch voltage-clamp methods were employed to record pharmacologically isolated excitatory postsynaptic currents (EPSCs) from DLSN neurons as an index of glutamatergic transmission. Using a modified internal pipette solution containing QX-314 and in which CsGluconate and GDPbetaS replaced Kgluconate and GTP, respectively, we recorded isolated monosynaptic EPSCs. The GABAA receptor antagonists bicuculline and picrotoxin were included in the external standard superfusion solution. Application of the GABAB receptor agonists, (+/-)-baclofen, CGP44533, and CGP35024 (10 nM to 10 microM) depressed glutamate-mediated EPSCs in a concentration-dependent manner. With the use of this combination of solutions, CGP44533 did not produce postsynaptic membrane property changes. Under these conditions, both (+/-)-baclofen and CGP35024 still induced increases of postsynaptic membrane conductance associated with an outward current. The GABAB receptor antagonist CGP55845A (1 microM) blocked the presynaptic CGP44533-mediated depressant effects of EPSCs, whereas CGP35348 (100 microM) or barium (2 mM) was ineffective. Furthermore, both CGP35348 (100 microM) and CGP55845A (1 microM) were effective in blocking the postsynaptic conductance changes associated with baclofen and CGP35024, whereas barium was ineffective. Our results demonstrate a distinct pharmacology for GABAB agonists acting at putative subtypes of GABAB receptors located on presynaptic sites of a glutamatergic terminal versus GABAB receptors on postsynaptic sites of a DLSN neuron. Furthermore, our results also suggest a different pharmacology and/or coupling of a GABAB receptor to different effectors at postsynaptic sites within the DLSN. Thus there may be three or more pharmacologically distinct GABAB receptors or receptor complexes associated with DLSN neurons: at least one pre- and two postsynaptic. If this distinct pharmacology and GABAB receptor distribution also extends to other CNS structures, such differences could provide development of selective drugs to act at these multiple sites.  (+info)

Heterogeneity of prejunctional NPY receptor-mediated inhibition of cardiac neurotransmission. (6/374)

Neuropeptide Y (NPY) has been proposed as the candidate inhibitory peptide mediating interactions between sympathetic and vagal neurotransmission in several species, including man. Here, we have defined the NPY receptors involved in modulation of cardiac autonomic neurotransmission using receptor-selective agonists and antagonists in the rabbit and guinea-pig isolated right atria. In isolated atrial preparations, sympathetically-mediated tachycardia (ST; with atropine 1 microM) or vagally-mediated bradycardia (VB; with propranolol 0.1-1 microM) in response to electrical field stimulation (EFS, 1-4 pulses) were tested 0-30 min after incubation with single concentrations of vehicle, NPY (0.01-10 microM), the Y2 receptor agonist N-Acetyl-[Leu28,31]NPY(24-36) (termed N-A[L]NPY(24-36)) or the Y1 receptor agonist [Leu31,Pro34]NPY (LP). The effect of NPY on the concentration-chronotropic response curves to isoprenaline and bethanechol were also assessed. Guinea-pig atria: NPY and N-A[L]NPY(24-36) caused concentration-dependent inhibition of VB and ST to EFS. Both peptides caused maximal inhibition of VB and ST within 10 min incubation and this remained constant. LP caused a concentration-dependent, transient inhibition of ST which was antagonized by the Y1-receptor antagonist GR231118 (0.3 microM), with apparent competitive kinetics. Rabbit atria: NPY (1 or 10 microM) had no effect on VB at any time point, but both NPY and LP caused a transient (approximately 10 min) inhibition of sympathetic tachycardia. This inhibition could be prevented by 0.3 microM GR231118. N-A[L]NPY(24-36) had no effect on ST. NPY had no effect on the response to beta-adrenoceptor stimulation by isoprenaline nor muscarinic-receptor stimulation by bethanechol in either species. Thus, in the guinea-pig, NPY causes a stable inhibition of both VB and ST to EFS via Y2 receptors and transient inhibition of ST via Y1 receptors. In contrast in the rabbit, NPY has no effect on the cardiac vagus and prejunctional inhibition of ST is transient and mediated by a Y1-like receptor (rather than Y2). Therefore it would be surprising if NPY plays a functional role in modulation of cardiac neurotransmission in the rabbit.  (+info)

Effects of (-)-tertatolol, (-)-penbutolol and (+/-)-pindolol in combination with paroxetine on presynaptic 5-HT function: an in vivo microdialysis and electrophysiological study. (7/374)

The antidepressant efficacy of selective serotonin reuptake inhibitors (SSRIs) might be enhanced by co-administration of 5-HT1A receptor antagonists. Thus, we have recently shown that the selective 5-HT1A receptor antagonist, WAY 100635, blocks the inhibitory effect of an SSRI on 5-HT cell firing, and enhances its ability to elevate extracellular 5-HT in the forebrain. Here we determined whether the beta-adrenoceptor/5-HT1A receptor ligands (+/-)-pindolol, (-)-tertatolol and (-)-penbutolol, interact with paroxetine in a similar manner. Both (-)-tertatolol (2.4 mg kg(-1) i.v.) and (-)-penbutolol (2.4 mg kg(-1) i.v.) enhanced the effect of paroxetine (0.8 mg kg(-1) i.v.) on extracellular 5-HT in the frontal cortex, whilst (+/-)-pindolol (4 mg kg(-1) i.v.) did not. (-)-Tertatolol (2.4 mg kg(-1) i.v.) alone caused a slight increase in 5-HT however, (-)-penbutolol (2.4 mg kg(-1) i.v.) alone had no effect. In electrophysiological studies (-)-tertatolol (2.4 mg kg(-1) i.v.) alone had no effect on 5-HT cell firing but blocked the inhibitory effect of paroxetine. In contrast, (-)-penbutolol (0.1-0.8 mg kg(-1) i.v.) itself inhibited 5-HT cell firing, and this effect was reversed by WAY 100635 (0.1 mg kg(-1) i.v.). We have recently shown that (+/-)-pindolol inhibits 5-HT cell firing via a WAY 100635-sensitive mechanism. Our data suggest that (-)-tertatolol enhances the effect of paroxetine on forebrain 5-HT via blockade of 5-HT1A autoreceptors which mediate paroxetine-induced inhibition of 5-HT cell firing. In comparison, the mechanisms by which (-)-penbutolol enhances the effect of paroxetine on extracellular 5-HT is unclear, since (-)-penbutolol itself appears to have agonist properties at the 5-HT1A autoreceptor. Indeed, the agonist action of (+/-)-pindolol at 5-HT1A autoreceptors probably explains its inability to enhance the effect of paroxetine on 5-HT in the frontal cortex. Overall, our data suggest that both (-)-tertatolol and (-)-penbutolol are superior to (+/-)-pindolol in terms of enhancing the effect of an SSRI on extracellular 5-HT. Both (-)-tertatolol and (-)-penbutolol are worthy of investigation for use as adjuncts to SSRIs in the treatment of major depression.  (+info)

Comparison of antagonist potencies at pre- and post-synaptic GABA(B) receptors at inhibitory synapses in the CA1 region of the rat hippocampus. (8/374)

Synaptic activation of gamma-aminobutyric acid (GABA)B receptors at GABA synapses causes (a) postsynaptic hyperpolarization mediating a slow inhibitory postsynaptic potential/current (IPSP/C) and (b) presynaptic inhibition of GABA release which depresses IPSPs and leads to paired-pulse widening of excitatory postsynaptic potentials (EPSPs). To address whether these effects are mediated by pharmacologically identical receptors the effects of six GABA(B) receptor antagonists of widely ranging potencies were tested against each response. Monosynaptic IPSP(B)s were recorded in the presence of GABA(A), AMPA/kainate and NMDA receptor antagonists. All GABA(B) receptor antagonists tested depressed the IPSP(B) with an IC50 based rank order of potency of CGP55679> or =CGP56433 = CGP55845A = CGP52432>CGP51176>CGP36742. Paired-pulse EPSP widening was recorded as an index of paired-pulse depression of GABA-mediated IPSP/Cs. A similar rank order of potency of antagonism of paired-pulse widening was observed to that for IPSP(B) inhibition. Comparison of the IC50 values for IPSP(B) inhibition and paired-pulse EPSP widening revealed a close correlation between the two effects in that their IC50s lay within the 95% confidence limits of a correlation line that described IC50 values for inhibition of paired-pulse EPSP widening that were 7.3 times higher than those for IPSP(B) inhibition. Using the compounds tested here it is not possible to assign different subtypes of GABA(B) receptor to pre- and post-synaptic loci at GABAergic synapses. However, 5-10 fold higher concentrations of antagonist are required to block presynaptic as opposed to postsynaptic receptors when these are activated by synaptically released GABA.  (+info)