Beta2-adrenoceptor polymorphism and bronchoprotective sensitivity with regular short- and long-acting beta2-agonist therapy. (1/1407)

The aim of the present study was to investigate bronchoprotective sensitivity in patients receiving regular treatment with short- and long-acting beta2-agonists and to evaluate any possible association with genetic polymorphism. Thirty-eight patients with stable mild to moderate asthma and receiving inhaled corticosteroids were randomized in a parallel group, double-blind, double-dummy fashion to receive 2 weeks of treatment with either formoterol (12 microg once daily, 6 microg twice daily or 24 microg twice daily) or terbutaline (500 microg four times daily). Bronchoprotection against methacholine challenge (as a provocative dose to produce a 20% fall in forced expiratory volume in 1.0 s: PD20) was measured at baseline (unprotected) after an initial 1 week run-in without beta2-agonist, and at 1 h after the first and last doses of each treatment. The PD20 values were log-transformed and calculated as change from baseline. Percentage desensitization of log PD20 for first- versus last-dose bronchoprotection was calculated and analysed according to effects of treatment and beta2-adrenoceptor polymorphism at codon 16 or 27. The mean degree of desensitization for bronchoprotection was comparable with all four treatments and there were no significant differences in absolute PD20 values after 2 weeks of chronic dosing. The PD20 values were (as microg of methacholine, geometric means+/-S. E.M.): formoterol, 12 microg once daily, 99+/-42 microg; formoterol, 6 microg twice daily, 107+/-44 microg; formoterol, 24 microg twice daily, 108+/-45 microg; terbutaline, 500 microg four times daily, 88+/-37 microg. All patients receiving formoterol, 24 microg twice daily, exhibited a loss of protection greater than 30% which was unrelated to polymorphism at codon 16 or 27. For codon 16, the use of lower doses of formoterol (12 microg once daily or 6 microg twice daily) showed wider variability in the propensity for protection loss in patients who were heterozygous, in contrast to a more uniform protection loss seen with homozygous glycine patients. The amount of protection loss was not significantly related to polymorphism at codon 16 or 27, expressed as values (mean+/-S.E.M.) for percentage desensitization according to each genotype (pooled treatments): Gly-16, 66+/-11%; Het-16, 53+/-8%; Arg-16, 69+/-18%; Glu-27, 68+/-12%; Het-27, 58+/-8%; Gln-27, 52+/-12%. The results of this preliminary study showed that bronchoprotective desensitization occurred readily in response to short- or long-acting beta2-agonist exposure irrespective of beta2-adrenoceptor polymorphism at codon 16 or 27. Further studies with larger patient numbers are required to further evaluate the effects of polymorphisms with lower doses of regular formoterol.  (+info)

Regulation of cardiac L-type Ca2+ channel by coexpression of G(alpha s) in Xenopus oocytes. (2/1407)

Activation of G(alpha s) via beta-adrenergic receptors enhances the activity of cardiac voltage-dependent Ca2+ channels of the L-type, mainly via protein kinase A (PKA)-dependent phosphorylation. Contribution of a PKA-independent effect of G(alpha s) has been proposed but remains controversial. We demonstrate that, in Xenopus oocytes, antisense knockdown of endogenous G(alpha s) reduced, whereas coexpression of G(alpha s) enhanced, currents via expressed cardiac L-type channels, independently of the presence of the auxiliary subunits alpha2/delta or beta2A. Coexpression of G(alpha s) did not increase the amount of alpha1C protein in whole oocytes or in the plasma membrane (measured immunochemically). Activation of coexpressed beta2 adrenergic receptors did not cause a detectable enhancement of channel activity; rather, a small cAMP-dependent decrease was observed. We conclude that coexpression of G(alpha s), but not its acute activation via beta-adrenergic receptors, enhances the activity of the cardiac L-type Ca2+ channel via a PKA-independent effect on the alpha1C subunit.  (+info)

Facilitation of signal onset and termination by adenylyl cyclase. (3/1407)

The alpha subunit (Gsalpha) of the stimulatory heterotrimeric guanosine triphosphate binding protein (G protein) Gs activates all isoforms of mammalian adenylyl cyclase. Adenylyl cyclase (Type V) and its subdomains, which interact with Gsalpha, promoted inactivation of the G protein by increasing its guanosine triphosphatase (GTPase) activity. Adenylyl cyclase and its subdomains also augmented the receptor-mediated activation of heterotrimeric Gs and thereby facilitated the rapid onset of signaling. These findings demonstrate that adenylyl cyclase functions as a GTPase activating protein (GAP) for the monomeric Gsalpha and enhances the GTP/GDP exchange factor (GEF) activity of receptors.  (+info)

Beta2-adrenergic receptor overexpression in the developing mouse heart: evidence for targeted modulation of ion channels. (4/1407)

1. We studied the effect of overexpression of the beta2-adrenergic receptor (beta2-AR) in the heart on ion channel currents in single cells isolated from hearts of fetal and neonatal transgenic and wild-type mice. The beta2-AR transgene construct was under the control of the murine alpha-myosin heavy chain (alpha-MHC) promoter, and ion channel activity was measured at distinct developmental stages using whole-cell and perforated patch clamp techniques. 2. We found no change in L-type Ca2+ channel current (ICa) density in early embryonic stages (E11-13) of beta2-AR transgenic positive (TG+) mice, but significant increases in ICa density in intermediate (E14-16, 152 %) and late (E17-19, 173.7 %) fetal and neonatal (1 day post partum, 161 %) TG+ compared with transgenic negative (TG-) mice. This increase in ICa was accompanied by a negative shift in the peak of the current-voltage relationship in TG+ mice. 3. Transient (< 3 min) or prolonged (16-24 h) exposure of TG- neonatal stage myocytes to 8-Br-cAMP (300 microM) increased ICa density and caused a shift in the current-voltage relationship to a similar extent to that seen in TG+ mice. In TG+ myocytes, 8-Br-cAMP had no effect. Exposure of TG+ cells to Rp-cAMPS reversed both the shift in voltage dependence and reduced the peak current density observed in these myocytes. We concluded from these results that the L-type Ca2+ channel is maximally modulated by cAMP-dependent protein kinase (PKA) in TG+ mice and that the alpha-MHC promoter is functional in the ventricle as early as embryonic day 14. 4. In contrast, we found that slow delayed rectifier K+ channels were not changed significantly at any of the developmental stages studied by the overexpression of beta2-ARs compared with TG- mice. The sensitivity of murine slow delayed rectifier K+ channels to cAMP was tested by both transient and prolonged exposure to 8-Br-cAMP (300 microM), which increased the slow delayed rectifier K+ channel current (IK,s) density to a similar extent in both TG- and TG+ neonatal myocytes. In addition, we found that there was no difference in the concentration dependence of the response of ICa and IK,s to 8-Br-cAMP. 5. Thus, overexpression of the beta2-AR in the heart results in distinct modulation of ICa, but not IK,s, and this is not due to differences in the 8-Br-cAMP sensitivity of the two channels. Instead, these results are consistent with both compartmentalization of beta2-AR-controlled cAMP and distinct localization of L-type Ca2+ and slow delayed rectifier K+ channels. This cAMP is targeted preferentially to the L-type Ca2+ channel and is not accessible to the slow delayed rectifier K+ channel.  (+info)

Pharmacological characterization of beta2-adrenoceptor in PGT-beta mouse pineal gland tumour cells. (5/1407)

1. The adrenoceptor in a mouse pineal gland tumour cell line (PGT-beta) was identified and characterized using pharmacological and physiological approaches. 2. Adrenaline and noradrenaline, adrenoceptor agonists, stimulated cyclic AMP generation in a concentration-dependent manner, but had no effect on inositol 1,4,5-trisphosphate production. Adrenaline was a more potent activator of cyclic AMP generation than noradrenaline, with half maximal-effective concentrations (EC50) seen at 175+/-22 nM and 18+/-2 microM for adrenaline and noradrenaline, respectively. 3. The addition of forskolin synergistically stimulated the adrenaline-mediated cyclic AMP generation in a concentration-dependent manner. 4. The pA2 value for the specific beta2-adrenoceptor antagonist ICI-118,551 (8.7+/-0.4) as an antagonist of the adrenaline-stimulated cyclic AMP generation were 3 units higher than the value for the betaI-adrenoceptor antagonist atenolol (5.6+/-0.3). 5. Treatment of the cells with adrenaline and forskolin evoked a 3 fold increase in the activity of serotonin N-acetyltransferase with the peak occurring 6 h after stimulation. 6. These results suggest the presence of beta2-adrenoceptors in mouse pineal cells and a functional relationship between the adenylyl cyclase system and the regulation of N-acetyltransferase expression.  (+info)

Decreased expression and activity of G-protein-coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. (6/1407)

Beta2-Adrenergic and chemokine receptor antagonists delay the onset and reduce the severity of joint injury in rheumatoid arthritis. beta2-Adrenergic and chemokine receptors belong to the G-protein-coupled receptor family whose responsiveness is turned off by the G-protein-coupled receptor kinase family (GRK-1 to 6). GRKs phosphorylate receptors in an agonist-dependent manner resulting in receptor/G-protein uncoupling via subsequent binding of arrestin proteins. We assessed the activity of GRKs in lymphocytes of rheumatoid arthritis (RA) patients by rhodopsin phosphorylation. We found a significant decrease in GRK activity in RA subjects that is mirrored by a decrease in GRK-2 protein expression. Moreover, GRK-6 protein expression is reduced in RA patients whereas GRK-5 protein levels were unchanged. In search of an underlying mechanism, we demonstrated that proinflammatory cytokines induce a decrease in GRK-2 protein levels in leukocytes from healthy donors. Since proinflammatory cytokines are abundantly expressed in RA, it may provide an explanation for the decrease in GRK-2 expression and activity in patients. No changes in beta2-adrenergic receptor number and Kd were detected. However, RA patients showed a significantly increased cAMP production and inhibition of TNF-alpha production by beta2-adrenergic stimulation, suggesting that reduced GRK activity is associated with increased sensitivity to beta2-adrenergic activation.  (+info)

The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. (7/1407)

betaarrestins mediate the desensitization of the beta2-adrenergic receptor (beta2AR) and many other G protein-coupled receptors (GPCRs). Additionally, betaarrestins initiate the endocytosis of these receptors via clathrin coated-pits and interact directly with clathrin. Consequently, it has been proposed that betaarrestins serve as clathrin adaptors for the GPCR family by linking these receptors to clathrin lattices. AP-2, the heterotetrameric clathrin adaptor protein, has been demonstrated to mediate the internalization of many types of plasma membrane proteins other than GPCRs. AP-2 interacts with the clathrin heavy chain and cytoplasmic domains of receptors such as those for epidermal growth factor and transferrin. In the present study we demonstrate the formation of an agonist-induced multimeric complex containing a GPCR, betaarrestin 2, and the beta2-adaptin subunit of AP-2. beta2-Adaptin binds betaarrestin 2 in a yeast two-hybrid assay and coimmunoprecipitates with betaarrestins and beta2AR in an agonist-dependent manner in HEK-293 cells. Moreover, beta2-adaptin translocates from the cytosol to the plasma membrane in response to the beta2AR agonist isoproterenol and colocalizes with beta2AR in clathrin-coated pits. Finally, expression of betaarrestin 2 minigene constructs containing the beta2-adaptin interacting region inhibits beta2AR endocytosis. These findings point to a role for AP-2 in GPCR endocytosis, and they suggest that AP-2 functions as a clathrin adaptor for the endocytosis of diverse classes of membrane receptors.  (+info)

Examining the efficiency of receptor/G-protein coupling with a cleavable beta2-adrenoceptor-gsalpha fusion protein. (8/1407)

Reconstitution of high-affinity agonist binding at the beta2-adrenoceptor (beta2AR) expressed in Sf9 insect cells requires a large excess of the stimulatory G-protein of adenylyl cyclase, Gsalpha, relative to receptor [R. Seifert, T. W. Lee, V. T. Lam & B. K. Kobilka, (1998) Eur. J. Biochem. 255, 369-382]. In a fusion protein of the beta2AR and Gsalpha (beta2AR-Gsalpha), which has only a 1 : 1 stoichiometry of receptor and G-protein, high-affinity agonist binding and agonist-stimulated GTP hydrolysis, guanosine 5'-O-(3-thiotriphosphate) (GTP[S]) binding and adenylyl cyclase (AC) activation are more efficient than in the nonfused coexpression system. In order to analyze the stability of the receptor/G-protein interaction, we constructed a fusion protein with a thrombin-cleavage site between beta2AR and Gsalpha (beta2AR-TS-Gsalpha). beta2AR-TS-Gsalpha efficiently reconstituted high-affinity agonist binding, agonist-stimulated GTP hydrolysis, GTP[S] binding and AC activation. Thrombin cleaves approximately 70% of beta2AR-TS-Gsalpha molecules in Sf9 membranes. Thrombin cleavage did not impair high-affinity agonist binding and GTP[S] binding but strongly reduced ligand-regulated GTPase activity and AC activity. We conclude that fusion of the beta2AR to Gsalpha promotes tight physical association of the two partners and that this association remains stable for a single activation/deactivation cycle even after cleavage of the link between the receptor and G-protein. Dilution of Gsalpha in the membrane and release of activated Gsalpha into the cytosol can both prevent cleaved beta2AR-TS-Gsalpha from undergoing multiple activation/deactivation cycles.  (+info)