Glutathione and homoglutathione synthesis in legume root nodules. (73/7586)

High-performance liquid chromatography (HPLC) with fluorescence detection was used to study thiol metabolism in legume nodules. Glutathione (GSH) was the major non-protein thiol in all indeterminate nodules examined, as well as in the determinate nodules of cowpea (Vigna unguiculata), whereas homoglutathione (hGSH) predominated in soybean (Glycine max), bean (Phaseolus vulgaris), and mungbean (Vigna radiata) nodules. All nodules had greater thiol concentrations than the leaves and roots of the same plants because of active thiol synthesis in nodule tissue. The correlation between thiol tripeptides and the activities of glutathione synthetase (GSHS) and homoglutathione synthetase (hGSHS) in the nodules of eight legumes, and the contrasting thiol contents and activities in alfalfa (Medicago sativa) leaves (98% hGSH, 100% hGSHS) and nodules (72% GSH, 80% GSHS) indicated that the distribution of GSH and hGSH is determined by specific synthetases. Thiol contents and synthesis decreased with both natural and induced nodule senescence, and were also reduced in the senescent zone of indeterminate nodules. Thiols and GSHS were especially abundant in the meristematic and infected zones of pea (Pisum sativum) nodules. Thiols and gamma-glutamylcysteinyl synthetase were also more abundant in the infected zone of bean nodules, but hGSHS was predominant in the cortex. Isolation of full-length cDNA sequences coding for gamma-glutamylcysteinyl synthetase from legume nodules revealed that they are highly homologous to those from other higher plants.  (+info)

The t-SNARE AtVAM3p resides on the prevacuolar compartment in Arabidopsis root cells. (74/7586)

Protein cargo is trafficked between the organelles of the endomembrane system inside transport vesicles, a process mediated by integral membrane proteins called SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) that reside on the surface of the vesicle (v-SNAREs) and target membrane (t-SNAREs). In examining transport of cargo between the trans-Golgi network and the vacuole in Arabidopsis, we have previously characterized AtPEP12p as a t-SNARE residing on the prevacuolar compartment and AtVTI1a as a v-SNARE that interacts with AtPEP12p. Recently, we have begun to characterize AtVAM3p, another Arabidopsis t-SNARE that shows high sequence homology to AtPEP12p. We have found that AtVTI1a also interacts with AtVAM3p, suggesting a role for this t-SNARE in post-Golgi trafficking. AtVAM3p has been suggested to localize to the vacuolar membrane in Arabidopsis cells; however, using specific antisera and expression of epitope-tagged versions of each t-SNARE, we have discovered that AtVAM3p is found on the same prevacuolar structure as AtPEP12p in Arabidopsis root cells.  (+info)

Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. (75/7586)

Calcium (Ca(2)+) efflux from the cytosol modulates Ca(2+) concentrations in the cytosol, loads Ca(2+) into intracellular compartments, and supplies Ca(2+) to organelles to support biochemical functions. The Ca(2+)/H(+) antiporter CAX1 (for CALCIUM EXCHANGER 1) of Arabidopsis is thought to be a key mediator of these processes. To clarify the regulation of CAX1, we examined CAX1 RNA expression in response to various stimuli. CAX1 was highly expressed in response to exogenous Ca(2+). Transgenic tobacco plants expressing CAX1 displayed symptoms of Ca(2+) deficiencies, including hypersensitivity to ion imbalances, such as increased magnesium and potassium concentrations, and to cold shock, but increasing the Ca(2+) in the media abrogated these sensitivities. Tobacco plants expressing CAX1 also demonstrated increased Ca(2+) accumulation and altered activity of the tonoplast-enriched Ca(2+)/H(+) antiporter. These results emphasize that regulated expression of Ca(2+)/H(+) antiport activity is critical for normal growth and adaptation to certain stresses.  (+info)

5-Methylcytosine distribution and genome organization in triticale before and after treatment with 5-azacytidine. (76/7586)

Triticale (2n=6x=42) is a hybrid plant including rye (R) and wheat (A and B) genomes. Using genomic in situ hybridization with rye DNA as a probe, we found the chromosomes of the R genome were not intermixed with the wheat chromosomes in 85% of nuclei. After treatment of seedlings with low doses of the drug 5-azacytidine (5-AC), leading to hypomethylation of the DNA, the chromosomes became intermixed in 60% of nuclei; the next generation showed intermediate organization. These results correlate with previous data showing that expression of R-genome rRNA genes, normally suppressed, is activated by 5-AC treatment and remains partially activated in the next generation. The distribution of 5-methylcytosine (5-mC) was studied using an antibody to 5-mC. Methylation was detected along the lengths of all chromosomes; there were some chromosome regions with enhanced and reduced methylation, but these were not located at consistent positions, nor were there differences between R and wheat genome chromosomes. After 5-AC treatment, lower levels of methylation were detected. After 5-AC treatment, in situ hybridization with rye genomic DNA sometimes showed micronuclei of rye origin and multiple translocations between wheat and rye chromosomes. Genomic DNA was analysed using methylation-sensitive restriction enzymes and, as probes, two rDNA sequences, two tandemly organised DNA sequences from rye (pSc200 and pSc250), and copia and the gypsy group retrotransposon fragments from rye and wheat. DNA extracted immediately after 5-AC treatment was cut more by methylation-sensitive restriction enzymes than DNA from untreated seedlings. Each probe gave a characteristic restriction fragment pattern, but rye- and wheat-origin probes behaved similarly, indicating that hypomethylation was induced in both genomes. In DNA samples from leaves taken 13-41 days after treatment, RFLP (Restriction Fragment Length Polymorphism) patterns were indistinguishable from controls and 5-AC treatments with all probes. Surprising differences in hybridization patterns were seen between DNA from root tips and leaves with the copia-fragment probes.  (+info)

Comet assay application in environmental monitoring: DNA damage in human leukocytes and plant cells in comparison with bacterial and yeast tests. (77/7586)

Urban airborne particulate is a complex mixture of air pollutants, many of which have not been identified. However, short-term mutagenesis tests together with chemicophysical parameter analysis are able to better assess air quality and genotoxic load. The findings of continuous monitoring (January 1991-August 1998) of urban air genotoxicity of a Po Valley town (Italy) on Salmonella typhimurium and Saccharomyces cerevisiae are reported. During this period, various measures (catalytic devices, unleaded fuels, annual vehicle overhaul, etc.) to improve air-dispersed pollutant control were enforced. However, a continuous presence of genotoxic compounds is shown and more qualitative than quantitative changes are evident. We also demonstrate the ability of the Comet assay to detect DNA-damaging agents in airborne particulate samples. We applied the test to human leukocytes and, with major improvements, to plant cells (Allium cepa roots and epigean tissues of Impatiens balsamina). The first findings on human leukocytes confirm the sensitivity of this assay, its peculiarity and its applicability in assessing genotoxicity in environmental samples. The capability of plants to show the response of multicellular organisms to environmental pollutants largely counterbalances a probable lowering in sensitivity. Moreover, application of the Comet test to epigean tissues could be useful in estimating the bioavailability of and genotoxic damage by air pollutants, including volatile compounds (ozone, benzene, nitrogen oxides, etc.) to higher plants.  (+info)

Identification and purification of hydroxyisourate hydrolase, a novel ureide-metabolizing enzyme. (78/7586)

We report the identification and purification of a novel enzyme from soybean root nodules that catalyzes the hydrolysis of 5-hydroxyisourate, which is the true product of the urate oxidase reaction. The product of this reaction is 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, and the new enzyme is designated 5-hydroxyisourate hydrolase. The enzyme was purified from crude extracts of soybean root nodules approximately 100-fold to apparent homogeneity with a final specific activity of 10 micromol/min/mg. The enzyme exhibited a native molecular mass of approximately 68 kDa by gel filtration chromatography and migrated as a single band on SDS-polyacrylamide gel electrophoresis with a subunit molecular mass of 68 +/- 2 kDa. The purified enzyme obeyed normal Michaelis-Menten kinetics, and the K(m) for 5-hydroxyisourate was determined to be 15 microM. The amino-terminal end of the purified protein was sequenced, and the resulting sequence was not found in any available data bases, confirming the novelty of the protein. These data suggest the existence of a hitherto unrecognized enzymatic pathway for the formation of allantoin.  (+info)

Nonstructural proteins of Tobacco rattle virus which have a role in nematode-transmission: expression pattern and interaction with viral coat protein. (79/7586)

RNA 2 of Tobacco rattle virus isolate PpK20 encodes the viral coat protein (CP) and two nonstructural proteins of 40 kDa ('40K protein') and 32.8 kDa ('32.8K'). The 40K protein is required for transmission of the virus by the vector nematode Paratrichodorus pachydermus whereas the 32.8K protein may be involved in transmission by other vector nematode species. An antiserum was raised against the 40K protein expressed in E. coli and used to study the expression and subcellular localization of this protein in infected Nicotiana benthamiana plants. The time-course of the expression of the 40K protein in leaves and roots was similar to that of CP and both proteins were similarly distributed over the 1000 g pellet, 30000 g pellet and 30000 g supernatant fractions of leaf and root homogenates. Using the yeast two-hybrid system, a strong interaction between CP subunits was observed and weaker interactions between CP and the 32.8K protein and between CP and the 40K protein were detected. A deletion of the C-terminal 19 amino acids of CP interfered with the CP-40K interaction but not with CP-32.8K or CP-CP interactions, whereas a C-terminal deletion of 79 amino acids interfered with CP-40K and CP-32.8K interactions but not with the CP-CP interaction. As the C terminus of CP is known to be involved in nematode-transmission of tobraviruses, the data support the hypothesis that interactions between CP and RNA 2-encoded nonstructural proteins play a role in the transmission process.  (+info)

PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. (80/7586)

The life cycle of angiosperms is punctuated by a dormant phase that separates embryonic and postembryonic development of the sporophyte. In the pickle (pkl) mutant of Arabidopsis, embryonic traits are expressed after germination. The penetrance of the pkl phenotype is strongly enhanced by inhibitors of gibberellin biosynthesis. Map-based cloning of the PKL locus revealed that it encodes a CHD3 protein. CHD3 proteins have been implicated as chromatin-remodeling factors involved in repression of transcription. PKL is necessary for repression of LEC1, a gene implicated as a critical activator of embryo development. We propose that PKL is a component of a gibberellin-modulated developmental switch that functions during germination to prevent reexpression of the embryonic developmental state.  (+info)