Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. (1/1046)

Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether specific chemokines were expressed in the CNS during acute demyelinating events by analyzing cerebrospinal fluid (CSF), whose composition reflects the CNS extracellular space. During MS attacks, we found elevated CSF levels of three chemokines that act toward T cells and mononuclear phagocytes: interferon-gamma-inducible protein of 10 kDa (IP-10); monokine induced by interferon-gamma (Mig); and regulated on activation, normal T-cell expressed and secreted (RANTES). We then investigated whether specific chemokine receptors were expressed by infiltrating cells in demyelinating MS brain lesions and in CSF. CXCR3, an IP-10/Mig receptor, was expressed on lymphocytic cells in virtually every perivascular inflammatory infiltrate in active MS lesions. CCR5, a RANTES receptor, was detected on lymphocytic cells, macrophages, and microglia in actively demyelinating MS brain lesions. Compared with circulating T cells, CSF T cells were significantly enriched for cells expressing CXCR3 or CCR5. Our results imply pathogenic roles for specific chemokine-chemokine receptor interactions in MS and suggest new molecular targets for therapeutic intervention.  (+info)

The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. (2/1046)

Recruitment of activated T cells to mucosal surfaces, such as the airway epithelium, is important in host defense and for the development of inflammatory diseases at these sites. We therefore asked whether the CXC chemokines IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), which specifically chemoattract activated T cells by signaling through the chemokine receptor CXCR3, were inducible in respiratory epithelial cells. The effects of proinflammatory cytokines, including IFN-gamma (Th1-type cytokine), Th2-type cytokines (IL-4, IL-10, and IL-13), and dexamethasone were studied in normal human bronchial epithelial cells (NHBEC) and in two human respiratory epithelial cell lines, A549 and BEAS-2B. We found that IFN-gamma, but not TNF-alpha or IL-1 beta, strongly induced IP-10, Mig, and I-TAC mRNA accumulation mainly in NHBEC and that TNF-alpha and IL-1 beta synergized with IFN-gamma induction in all three cell types. High levels of IP-10 protein (> 800 ng/ml) were detected in supernatants of IFN-gamma/TNF-alpha-stimulated NHBEC. Neither dexamethasone nor Th2 cytokines modulated IP-10, Mig, or I-TAC expression. Since IFN-gamma is up-regulated in tuberculosis (TB), using in situ hybridization we studied the expression of IP-10 in the airways of TB patients and found that IP-10 mRNA was expressed in the bronchial epithelium. In addition, IP-10-positive cells obtained by bronchoalveolar lavage were significantly increased in TB patients compared with normal controls. These results show that activated bronchial epithelium is an important source of IP-10, Mig, and I-TAC, which may, in pulmonary diseases such as TB (in which IFN-gamma is highly expressed) play an important role in the recruitment of activated T cells.  (+info)

CD40 ligand-CD40 interaction induces chemokines in cervical carcinoma cells in synergism with IFN-gamma. (3/1046)

Cellular immunity plays a major role in controlling human papilloma virus infection and development of cervical carcinoma. Mononuclear cell infiltration possibly due to the action of chemokines becomes prominent in the tumor tissue. In fact, the macrophage chemoattractant protein-1, MCP-1, was detected in cervical squamous cell carcinoma in situ, whereas absent in cultured cells. From this, unknown environmental factors were postulated regulating chemokine expression in vivo. In this study, we show high CD40 expression on cervical carcinoma cells and CD40 ligand (CD40L) staining on attracted T cells in tumor tissue, suggesting a paracrine stimulation mechanism via CD40L-CD40 interactions. We therefore investigated chemokine synthesis in nonmalignant and malignant human papilloma virus-positive cell lines after CD40L exposure. Constitutive expression of MCP-1, MCP-3, RANTES, and IFN-gamma-inducible protein-10 was almost undetectable in all cell lines tested. CD40L was able to induce MCP-1 production; however, despite much higher CD40 expression in malignant cells, MCP-1 induction was significantly lower compared with nontumorigenic cells. After sensitization with IFN-gamma, another T cell-derived cytokine showing minimal effects on CD40 expression levels, CD40 ligation led to a more than 20-fold MCP-1 induction in carcinoma cell lines. An even stronger effect was observed for IFN-gamma-inducible protein-10. Our study highlights the synergism of T cell-derived mediators such as CD40L and IFN-gamma for chemokine responses in cervical carcinoma cells, helping to understand the chemokine expression patterns observed in vivo.  (+info)

Gene expression and production of the monokine induced by IFN-gamma (MIG), IFN-inducible T cell alpha chemoattractant (I-TAC), and IFN-gamma-inducible protein-10 (IP-10) chemokines by human neutrophils. (4/1046)

Monokine induced by IFN-gamma (MIG), IFN-inducible T cell alpha chemoattractant (I-TAC), and IFN-gamma-inducible protein of 10 kDa (IP-10) are related members of the CXC chemokine subfamily that bind to a common receptor, CXCR3, and that are produced by different cell types in response to IFN-gamma. We have recently reported that human polymorphonuclear neutrophils (PMN) have the capacity to release IP-10. Herein, we show that PMN also have the ability to produce MIG and to express I-TAC mRNA in response to IFN-gamma in combination with either TNF-alpha or LPS. While IFN-gamma, alone or in association with agonists such as fMLP, IL-8, granulocyte (G)-CSF and granulocyte-macrophage (GM)-CSF, failed to influence MIG, IP-10, and I-TAC gene expression, IFN-alpha, in combination with TNF-alpha, LPS, or IL-1beta, resulted in a considerable induction of IP-10 release by neutrophils. Furthermore, IL-10 and IL-4 significantly suppressed the expression of MIG, IP-10, and I-TAC mRNA and the extracellular production of MIG and IP-10 in neutrophils stimulated with IFN-gamma plus either LPS or TNF-alpha. Finally, supernatants harvested from stimulated PMN induced migration and rapid integrin-dependent adhesion of CXCR3-expressing lymphocytes; these activities were significantly reduced by neutralizing anti-MIG and anti-IP-10 Abs, suggesting that they were mediated by MIG and IP-10 present in the supernatants. Since MIG, IP-10, and I-TAC are potent chemoattractants for NK cells and Th1 lymphocytes, the ability of neutrophils to produce these chemokines might contribute not only to the progression and evolution of the inflammatory response, but also to the regulation of the immune response.  (+info)

Differential induction of adhesion molecule and chemokine expression by LTalpha3 and LTalphabeta in inflammation elucidates potential mechanisms of mesenteric and peripheral lymph node development. (5/1046)

Lymphotoxin (LT) is a member of the proinflammatory TNF family of cytokines that plays a critical role in the development of lymphoid tissue. It has previously been reported that the presence of the LTalpha transgene under the control of the rat insulin promoter results in inflammation at the sites of transgene expression. LTalpha transgene expression results in expression of the adhesion molecules VCAM, ICAM, peripheral node addressin (a marker of peripheral lymph nodes), and mucosal addressin cellular adhesion molecule (a marker of mucosal lymphoid tissue, including mesenteric lymph nodes). In this study to determine the mechanisms by which LT promotes inflammation and lymphoid tissue organization, we analyzed the regulation of expression of adhesion molecules and chemokines in LT transgenic mice. The results demonstrate that LTalpha3 induces expression of the adhesion molecules VCAM, ICAM, and mucosal addressin cellular adhesion molecule as well as the chemokines RANTES, IFN-inducible protein-10, and monocyte chemotactic protein-1, while LTalphabeta is required for the induction of peripheral node addressin that may contribute to the recruitment of L-selectinhigh CD44low naive T cells. These data provide candidate mediators of LT-induced inflammation as well as potential mechanisms by which LTalpha and LTalphabeta may differentially promote the development of mesenteric and peripheral lymph nodes.  (+info)

Early gene expression of NK cell-activating chemokines in mice resistant to Leishmania major. (6/1046)

Susceptibility of mice to Leishmania major is associated with an insufficient NK cell-mediated innate immune response. We analyzed the expression of NK cell-activating chemokines in vivo during the first days of infection in resistant and susceptible mice. The mRNA expression of gamma interferon-inducible protein 10 (IP-10), monocyte chemoattractant protein 1 (MCP-1), and lymphotactin was upregulated 1 day after infection in the draining lymph nodes of resistant C57BL/6 mice but not in those of susceptible BALB/c mice. In vivo local treatment of BALB/c mice with recombinant IP-10 shortly after infection resulted in an enhanced NK cell activity in the draining lymph node. The data suggest that although the recruitment of NK cells is normal in susceptible mice, the lack of NK cell-activating chemokines is a factor resulting in a suboptimal NK cell-mediated defense.  (+info)

Acquisition of selectin binding and peripheral homing properties by CD4(+) and CD8(+) T cells. (7/1046)

Different T cell subsets exhibit distinct capacities to migrate into peripheral sites of inflammation, and this may in part reflect differential expression of homing receptors and chemokine receptors. Using an adoptive transfer approach, we examined the ability of functionally distinct subsets of T cells to home to a peripheral inflammatory site. The data directly demonstrate the inability of naive T cells and the ability of effector cells to home to inflamed peritoneum. Furthermore, interleukin (IL)-12 directs the differentiation of either CD4(+) or CD8(+) T cells into effector populations that expresses functional E- and P-selectin ligand and that are preferentially recruited into the inflamed peritoneum compared with T cells differentiated in the presence of IL-4. Recruitment can be blocked by anti-E- and -P-selectin antibodies. The presence of antigen in the peritoneum promotes local proliferation of recruited T cells, and significantly amplifies the Th1 polarization of the lymphocytic infiltrate. Preferential recruitment of Th1 cells into the peritoneum is also seen when cytokine response gene 2 (CRG-2)/interferon gamma-inducible protein 10 (IP-10) is used as the sole inflammatory stimulus. We have also found that P-selectin binds only to antigen-specific T cells in draining lymph nodes after immunization, implying that both antigen- and cytokine-mediated signals are required for expression of functional selectin-ligand.  (+info)

CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. (8/1046)

Multiple sclerosis (MS) is a T cell-dependent chronic inflammatory disease of the central nervous system. The role of chemokines in MS and its different stages is uncertain. Recent data suggest a bias in expression of chemokine receptors by Th1 vs. Th2 cells; human Th1 clones express CXCR3 and CCR5 and Th2 clones express CCR3 and CCR4. Chemokine receptors expressed by Th1 cells may be important in MS, as increased interferon-gamma (IFN-gamma) precedes clinical attacks, and IFN-gamma injection induces disease exacerbations. We found CXCR3(+) T cells increased in blood of relapsing-remitting MS, and both CCR5(+) and CXCR3(+) T cells increased in progressive MS compared with controls. Furthermore, peripheral blood CCR5(+) T cells secreted high levels of IFN-gamma. In the brain, the CCR5 ligand, MIP-1alpha, was strongly associated with microglia/macrophages, and the CXCR3 ligand, IP-10, was expressed by astrocytes in MS lesions but not unaffected white matter of control or MS subjects. Areas of plaque formation were infiltrated by CCR5-expressing and, to a lesser extent, CXCR3-expressing cells; Interleukin (IL)-18 and IFN-gamma were expressed in demyelinating lesions. No leukocyte expression of CCR3, CCR4, or six other chemokines, or anti-inflammatory cytokines IL-5, IL-10, IL-13, and transforming growth factor-beta was observed. Thus, chemokine receptor expression may be used for immunologic staging of MS and potentially for other chronic autoimmune/inflammatory processes such as rheumatoid arthritis, autoimmune diabetes, or chronic transplant rejection. Furthermore, these results provide a rationale for the use of agents that block CCR5 and/or CXCR3 as a therapeutic approach in the treatment of MS.  (+info)