Genetic basis in plants for interactions with disease-suppressive bacteria. (1/155)

Plant health depends, in part, on associations with disease-suppressive microflora, but little is known about the role of plant genes in establishing such associations. Identifying such genes will contribute to understanding the basis for plant health in natural communities and to new strategies to reduce dependence on pesticides in agriculture. To assess the role of the plant host in disease suppression, we used a genetic mapping population of tomato to evaluate the efficacy of the biocontrol agent Bacillus cereus against the seed pathogen Pythium torulosum. We detected significant phenotypic variation among recombinant inbred lines that comprise the mapping population for resistance to P. torulosum, disease suppression by B. cereus, and growth of B. cereus on the seed. Genetic analysis revealed that three quantitative trait loci (QTL) associated with disease suppression by B. cereus explained 38% of the phenotypic variation among the recombinant inbred lines. In two cases, QTL for disease suppression by B. cereus map to the same locations as QTL for other traits, suggesting that the host effect on biocontrol is mediated by different mechanisms. The discovery of a genetic basis in the host for interactions with a biocontrol agent suggests new opportunities to exploit natural genetic variation in host species to enhance our understanding of beneficial plant-microbe interactions and develop ecologically sound strategies for disease control in agriculture.  (+info)

Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. (2/155)

Three antifungal compounds, designated xanthobaccins A, B, and C, were isolated from the culture fluid of Stenotrophomonas sp. strain SB-K88, a rhizobacterium of sugar beet that suppresses damping-off disease. Production of xanthobaccin A in culture media was compared with the disease suppression activities of strain SB-K88 and less suppressive strains that were obtained by subculturing. Strain SB-K88 was applied to sugar beet seeds, and production of xanthobaccin A in the rhizosphere of seedlings was confirmed by using a test tube culture system under hydroponic culture conditions; 3 microg of xanthobaccin A was detected in the rhizosphere on a per-plant basis. Direct application of purified xanthobaccin A to seeds suppressed damping-off disease in soil naturally infested by Pythium spp. We suggest that xanthobaccin A produced by strain SB-K88 plays a key role in suppression of sugar beet damping-off disease.  (+info)

Phytotoxicity of indole-3-acetic acid produced by the fungus, Pythium aphanidermatum. (3/155)

Pythium aphanidermatum causes the serious disease of Pythium red blight on bentgrass. IAA, one of the metabolites that has been isolated from this fungus, showed the same symptom of Pythium red blight on bentgrass at a concentration of 1,000 mg/1. The IAA content in the foliage of bentgrass infected by this fungus was about 200 times that of an untreated control. These results suggest that IAA produced by this fungus was the causal substance of Pythium red blight on bentgrass.  (+info)

Isolation and identification of antifungal N-butylbenzenesulphonamide produced by Pseudomonas sp. AB2. (4/155)

An antifungal bacterial strain, isolated from a greenhouse soil sample, inhibits growth of microflora nearby. It was selected for further studies of bacterial antifungal properties. This isolate was identified as a Pseudomonas sp. based on carbohydrate utilization, and other biochemical and physiological tests. Petri plate assay revealed that the Pseudomonas sp. exhibited antifungal activity against the plant pathogens, Pythium ultimum, Rhizoctonia solani, Phytophthora capsici, Botrytis cinerea and Fusarium oxysporum. Using direct inhibition bioassay on TLC plates after ethyl acetate extraction of the culture filtrate, we correlated antifungal activity with production of antifungal compounds. An antifungal antibiotic was isolated from the culture filtrate and was identified as N-butylbenzenesulphonamide. ED50, values of the N-butylbenzenesulphonamide against P. ultimum, P. capsici, R. solani, and B. cinerea were 73, 41, 33 and 102 ppm, respectively.  (+info)

Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. (5/155)

Secondary metabolism in fluorescent pseudomonads is globally regulated by gacS, which encodes a membrane-bound sensor kinase, and gacA, which encodes a transcriptional response regulator. Spontaneous mutation in either gene blocked biosynthesis of the antimicrobial compounds hydrogen cyanide, 2,4-diacetylphloroglucinol, pyoluteorin, and pyrrolnitrin by the model biocontrol strain Pseudomonas fluorescens CHA0. Spontaneous mutants also had altered abilities to utilize several carbon sources and to increase medium pH compared with the wild type, suggesting that gacS and gacA influence primary as well as secondary bacterial metabolism. Inoculant efficacy for biocontrol was significantly reduced by contamination with regulatory mutants which accumulated during inoculum production. Spontaneous mutants accumulated in all 192 separate liquid cultures examined, typically at a frequency of 1% or higher after 12 days. During scale-up in a simulated industrial fermentation process, mutants increased exponentially and accounted for 7, 23, and 61% of the total viable cells after transfer to 20-, 100-, and 500-ml preparations, respectively. GacS(-) and GacA(-) mutants had identical phenotypes and occurred at the same frequency, indicating that the selective pressures for the two mutants were similar. We developed a simple screening method for monitoring inoculant quality based on the distinctive appearance of mutant colonies (i.e., orange color, enlarged diameter, hyperfluorescence). Mutant competitiveness was favored in a nutrient-rich medium with a high electrolyte concentration (nutrient broth containing yeast extract). We were able to control mutant accumulation and to clean up contaminated cultures by using certain mineral amendments (i.e., zinc, copper, cobalt, manganese, and ammonium molybdate) or by diluting media 1/10. Spontaneous mutants and genetic constructs had the same response to culture conditions. Zinc and medium dilution were also effective for improving the genetic stability of other P. fluorescens biocontrol strains obtained from Ghana and Italy.  (+info)

Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. (6/155)

Stenotrophomonas maltophilia W81 can protect sugar beet against PYTHIUM:-mediated damping-off disease through the production of an extracellular protease. Here, the proteolytic enzyme of W81 was purified by anion-exchange chromatography and characterized as a serine protease. The purified enzyme was fungicidal against PYTHIUM: ultimum in vitro. Its synthesis was inducible by casein in W81, and mutagenesis of this strain using the luciferase (luxAB) reporter transposon Tn5-764cd resulted in the isolation of two mutant derivatives (W81M3 and W81M4) capable of producing significantly increased levels of extracellular protease in the presence of casein. Strain W81M4 also exhibited increased chitinolytic activity. The luxAB fusions in strains W81M3 and W81M4 were highly expressed in the absence of casein but not in its presence, suggesting that the corresponding loci were involved in down-regulating extracellular protease production. Extracellular protease production in the W81 wild-type strain and protease overproduction in mutants W81M3 and W81M4 were also induced in the presence of the autoclaved fungal mycelium. In soil microcosms naturally infested by PYTHIUM: spp., inoculation of sugar beet seeds with W81M3 or W81M4 resulted in improved biocontrol of PYTHIUM:-mediated damping-off disease compared with W81, and the level of protection achieved was equivalent to that conferred by chemical fungicides. The wild-type W81 and its mutant derivatives did not differ in rhizosphere colonization. Therefore, the improved biocontrol ability of W81M3 and W81M4 resulted from their capacity to overproduce extracellular serine protease.  (+info)

Control of Pythium root rot on hydroponically grown cucumbers with silver-coated cloth. (7/155)

Silver-coated cloth (SCC) effectively controlled root rot that was caused by Pythium aphanidermatum in hydroponically grown cucumber plants. The presence of SCC in the hydroponic solution reduced the root rot from 100% to 10% 20 days after inoculation with zoospores of P. aphanidermatum. It was suggested that the inhibition of SCC was caused not only by the silver ion dissolved from SCC, but also by the metallic silver and silver compounds formed on the surface of the root.  (+info)

Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. (8/155)

A low-molecular weight protein, termed oligandrin, was purified to homogeneity from the culture filtrate of the mycoparasitic fungus Pythium oligandrum. When applied to decapitated tomato (Lycopersicon esculentum Mill. var. Prisca) plants, this protein displayed the ability to induce plant defense reactions that contributed to restrict stem cell invasion by the pathogenic fungus Phytophthora parasitica. According to its N-terminal sequence, low-molecular weight, acidic isoelectric point, ultraviolet spectrum, and migration profile, the P. oligandrum-produced oligandrin was found to share some similarities with several elicitins from other Phytophthora spp. and Pythium spp. However, oligandrin did not induce hypersensitive reactions. A significant decrease in disease incidence was monitored in oligandrin-treated plants as compared with water-treated plants. Ultrastructural investigations of the infected tomato stem tissues from non-treated plants showed a rapid colonization of all tissues associated with a marked host cell disorganization. In stems from oligandrin-treated plants, restriction of fungal growth to the outermost tissues and decrease in pathogen viability were the main features of the host-pathogen interaction. Invading fungal cells were markedly damaged at a time when the cellulose component of their cell walls was quite well preserved. Host reactions included the plugging of intercellular spaces as well as the occasional formation of wall appositions at sites of potential pathogen entry. In addition, pathogen ingress in the epidermis was associated with the deposition of an electron-opaque material in most invaded intercellular spaces. This material, lining the primary walls, usually extended toward the inside to form deposits that frequently interacted with the wall of invading hyphae. In the absence of fungal challenge, host reactions were not detected.  (+info)