Thaumatin production in Aspergillus awamori by use of expression cassettes with strong fungal promoters and high gene dosage. (1/733)

Four expression cassettes containing strong fungal promoters, a signal sequence for protein translocation, a KEX protease cleavage site, and a synthetic gene (tha) encoding the sweet protein thaumatin II were used to overexpress this protein in Aspergillus awamori lpr66, a PepA protease-deficient strain. The best expression results were obtained with the gdhA promoter of A. awamori or with the gpdA promoter of Aspergillus nidulans. There was good correlation of tha gene dosage, transcript levels, and thaumatin secretion. The thaumatin gene was expressed as a transcript of the expected size in each construction (1.9 or 1.4 kb), and the transcript levels and thaumatin production rate decayed at the end of the growth phase, except in the double transformant TB2b1-44-GD5, in which secretion of thaumatin continued until 96 h. The recombinant thaumatin secreted by a high-production transformant was purified to homogeneity, giving one major component and two minor components. In all cases, cleavage of the fused protein occurred at the KEX recognition sequence. This work provides new expression systems in A. awamori that result in very high levels of thaumatin production.  (+info)

Subtilisin-like proprotein convertases, PACE4 and PC8, as well as furin, are endogenous proalbumin convertases in HepG2 cells. (2/733)

Serum albumin is synthesized as a larger precursor form, proalbumin, which undergoes proteolytic processing at a dibasic site by a hepatic proprotein convertase within the secretory pathway to generate the mature form. Although furin, a member of the subtilisin-like proprotein convertase (SPC) family, was thought to be the only candidate hepatic convertase for proalbumin, SPC family members other than furin were recently suggested to also be involved in proalbumin processing. This study was designed to identify the endogenous proprotein convertases involved in proalbumin processing. Since human hepatoma HepG2 cells are highly differentiated and produce major plasma proteins, this cell line was used as a model for hepatocytes. Northern blot analysis revealed that PACE4, furin and PC8 of the SPC family were expressed in HepG2 cells as well as in the liver. Ribonuclease protection assay showed that PACE4A-II mRNA is the major transcript in HepG2 cells among the PACE4 isoforms. The coexpression studies showed that furin, PACE4A-II and PC8 were all able to convert proalbumin to albumin correctly. To elucidate the roles of these endogenous SPC family members in proalbumin processing, the antisense RNA for PACE4, furin and PC8 was stably expressed in HepG2 cells, respectively. The expression of each antisense RNA resulted in approximately 30% inhibition of endogenous proalbumin processing. We therefore concluded that PACE4 and PC8, as well as furin, are involved in the processing of proalbumin in HepG2 cells, and that these SPC family members are functionally redundant in this processing.  (+info)

Thyroid hormone receptor-associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID. (3/733)

Coactivators previously implicated in ligand-dependent activation functions by thyroid hormone receptor (TR) include p300 and CREB-binding protein (CBP), the steroid receptor coactivator-1 (SRC-1)-related family of proteins, and the multicomponent TR-associated protein (TRAP) complex. Here we show that two positive cofactors (PC2 and PC4) derived from the upstream stimulatory activity (USA) cofactor fraction act synergistically to mediate thyroid hormone (T3)-dependent activation either by TR or by a TR-TRAP complex in an in vitro system reconstituted with purified factors and DNA templates. Significantly, the TRAP-mediated enhancement of activation by TR does not require the TATA box-binding protein-associated factors of TFIID. Furthermore, neither the pleiotropic coactivators CBP and p300 nor members of the SRC-1 family were detected in either the TR-TRAP complex or the other components of the in vitro assay system. These results show that activation by TR at the level of naked DNA templates is enhanced by cooperative functions of the TRAP coactivators and the general coactivators PC2 and PC4, and they further indicate a potential functional redundancy between TRAPs and TATA box-binding protein-associated factors in TFIID. In conjunction with earlier studies on other nuclear receptor-interacting cofactors, the present study also suggests a multistep pathway, involving distinct sets of cofactors, for activation of hormone responsive genes.  (+info)

Cloning and characterization of a mammalian prenyl protein-specific protease. (4/733)

Proteins containing C-terminal "CAAX" sequence motifs undergo three sequential post-translational processing steps: modification of the cysteine with either a 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenyl lipid, proteolysis of the C-terminal -AAX tripeptide, and methylation of the carboxyl group of the now C-terminal prenylcysteine. A putative prenyl protein protease in yeast, designated Rce1p, was recently identified. In this study, a portion of a putative human homologue of RCE1 (hRCE1) was identified in a human expressed sequence tag data base, and the corresponding cDNA was cloned. Expression of hRCE1 was detected in all tissues examined. Both yeast and human RCE1 proteins were produced in Sf9 insect cells by infection with a recombinant baculovirus; membrane preparations derived from the infected Sf9 cells exhibited a high level of prenyl protease activity. Recombinant hRCE1 so produced recognized both farnesylated and geranylgeranylated proteins as substrates, including farnesyl-Ki-Ras, farnesyl-N-Ras, farnesyl-Ha-Ras, and the farnesylated heterotrimeric G protein Ggamma1 subunit, as well as geranylgeranyl-Ki-Ras and geranylgeranyl-Rap1b. The protease activity of hRCE1 activity was specific for prenylated proteins, because unprenylated peptides did not compete for enzyme activity. hRCE1 activity was also exquisitely sensitive to a prenyl peptide analogue that had been previously described as a potent inhibitor of the prenyl protease activity in mammalian tissues. These data indicate that both the yeast and the human RCE1 gene products are bona fide prenyl protein proteases and suggest that they play a major role in the processing of CAAX-type prenylated proteins.  (+info)

Disruption of the mouse Rce1 gene results in defective Ras processing and mislocalization of Ras within cells. (5/733)

Little is known about the enzyme(s) required for the endoproteolytic processing of mammalian Ras proteins. We identified a mouse gene (designated Rce1) that shares sequence homology with a yeast gene (RCE1) implicated in the proteolytic processing of Ras2p. To define the role of Rce1 in mammalian Ras processing, we generated and analyzed Rce1-deficient mice. Rce1 deficiency was lethal late in embryonic development (after embryonic day 15.5). Multiple lines of evidence revealed that Rce1-deficient embryos and cells lacked the ability to endoproteolytically process Ras proteins. First, Ras proteins from Rce1-deficient cells migrated more slowly on SDS-polyacrylamide gels than Ras proteins from wild-type embryos and fibroblasts. Second, metabolic labeling of Rce1-deficient cells revealed that the Ras proteins were not carboxymethylated. Finally, membranes from Rce1-deficient fibroblasts lacked the capacity to proteolytically process farnesylated Ha-Ras, N-Ras, and Ki-Ras or geranylgeranylated Ki-Ras. The processing of two other prenylated proteins, the farnesylated Ggamma1 subunit of transducin and geranylgeranylated Rap1B, was also blocked. The absence of endoproteolytic processing and carboxymethylation caused Ras proteins to be mislocalized within cells. These studies indicate that Rce1 is responsible for the endoproteolytic processing of the Ras proteins in mammals and suggest a broad role for this gene in processing other prenylated CAAX proteins.  (+info)

The RGD motif and the C-terminal segment of proprotein convertase 1 are critical for its cellular trafficking but not for its intracellular binding to integrin alpha5beta1. (6/733)

Cellular trafficking of subtilisin/kexin-like precursor convertases (PCs) may be regulated by a number of motifs, some of which are present within the P-domain and in the C-terminal sequence. Six of the seven known PCs contain a conserved RGD sequence within the P domain. In order to investigate the functional importance of this motif, we generated mutants of PC1 that contain a Myc tag epitope inserted between the prosegment and the catalytic subunit. Cellular expression of vaccinia virus recombinants revealed that this tag did not seem to influence the autocatalytic conversion of proPC1 into PC1 or its bioactivity. The two PC1 variants produced possess either the wild type RGD sequence or its RGE mutant. Stable transfectants of these variants in AtT20 cells revealed that similar to the wild type enzyme, PC1-RGD-Myc is sorted to secretory granules. In contrast, PC1-RGE-Myc exits the cell via the constitutive secretory pathway. In vitro, a 14-mer peptide spanning the RGD sequence of PC1, but not its RGE mutant, binds to cell surface vitronectin-binding integrins of Chinese hamster ovary cells. However, within the endoplasmic reticulum and in an RGD-independent fashion, integrin alpha5beta1 associates primarily with the zymogens proPC1, proPC1-DeltaC (missing the C-terminal 137 residues), as well as proPC2. Thus, the observed discrimination between the secretion routes of PC1-RGD and PC1-RGE does not implicate integrins such as alpha5beta1.  (+info)

Endoprotease PACE4 is Ca2+-dependent and temperature-sensitive and can partly rescue the phenotype of a furin-deficient cell strain. (7/733)

PACE4 is a member of the eukaryotic subtilisin-like endoprotease family. The expression of human PACE4 in RPE.40 cells (furin-null mutants derived from Chinese hamster ovary K1 cells) resulted in the rescue of a number of wild-type characteristics, including sensitivity to Sindbis virus and the ability to process the low-density-lipoprotein receptor-related protein. Expression of PACE4 in these cells failed to restore wild-type sensitivity to Pseudomonas exotoxin A. Co-expression of human PACE4 in these cells with either a secreted form of the human insulin pro-receptor or the precursor form of von Willebrand factor resulted in both proproteins being processed; RPE.40 cells were unable to process either precursor protein in the absence of co-expressed PACE4. Northern analysis demonstrated that untransfected RPE.40 cells express mRNA species for four PACE4 isoforms, suggesting that any endogenous PACE4 proteins produced by these cells are either non-functional or sequestered in a compartment outside of the secretory pathway. In experiments in vitro, PACE4 processed diphtheria toxin and anthrax toxin protective antigen, but not Pseudomonas exotoxin A. The activity of PACE4 in vitro was Ca2+-dependent and, unlike furin, was sensitive to temperature changes between 22 and 37 degrees C. RPE.40 cells stably expressing human PACE4 secreted an endoprotease with the same Ca2+ dependence and temperature sensitivity as that observed in membrane fractions of these cells assayed in vitro. These results, in conjunction with other published work, demonstrate that PACE4 is an endoprotease with more stringent substrate specificity and more limited operating parameters than furin.  (+info)

The differential processing of proenkephalin A in mouse and human breast tumour cell lines. (8/733)

We have carried out an investigation into the processing of the enkephalin-like immunoreactivity reported in breast tissue using two human breast tumour cell lines and a mouse tumour cell line. A 46 kDa form of proenkephalin (PE) has been observed in the cell lysates of two human breast tumour cell lines (MCF-7, ZR-75-1) and the mouse androgen-responsive Shionogi breast carcinoma cell line (SC115). PE processing in the cell lysates of these cells was assessed by a specific met-enkephalin RIA. The basal levels of processed PE in the MCF-7, ZR-75-1 and SC115 cell lysates were 30, 30 and 76% respectively. The processing enzymes PC1 and PC2, which have been implicated in the differential processing of PE, were detected by immunoblot analysis in these cells. PC1 was found within the cell extracts of all three cell lines. PC2 was only observed in the SC115 cell line, which may account for the higher percentage of processed PE measured. The cDNA of PC2 has been transfected into ZR-75-1 cells and this was accompanied by an increase in the level of processed PE from 30 to 76%. These breast tumour cell lines may provide a useful insight into the function of enkephalin-containing peptides in breast cancer.  (+info)