Lipid transfer inhibitor protein defines the participation of lipoproteins in lipid transfer reactions: CETP has no preference for cholesteryl esters in HDL versus LDL. (1/740)

Cholesteryl ester transfer protein (CETP) catalyzes the net transfer of cholesteryl ester (CE) between lipoproteins in exchange for triglyceride (heteroexchange). It is generally held that CETP primarily associates with HDL and preferentially transfers lipids from this lipoprotein fraction. This is illustrated in normal plasma where HDL is the primary donor of the CE transferred to VLDL by CETP. However, in plasma deficient in lipid transfer inhibitor protein (LTIP) activity, HDL and LDL are equivalent donors of CE to VLDL (Arterioscler Thromb Vasc Biol. 1997;17:1716-1724). Thus, we have hypothesized that the preferential transfer of CE from HDL in normal plasma is a consequence of LTIP activity and not caused by a preferential CETP-HDL interaction. We have tested this hypothesis in lipid mass transfer assays with partially purified CETP and LTIP, and isolated lipoproteins. With a physiological mixture of lipoproteins, the preference ratio (PR, ratio of CE mass transferred from a lipoprotein to VLDL versus its CE content) for HDL and LDL in the presence of CETP alone was approximately 1 (ie, no preference). Fourfold variations in the LDL/HDL ratio or in the levels of HDL in the assay did not result in significant preferential transfer from any lipoprotein. On addition of LTIP, the PR for HDL was increased up to 2-fold and that for LDL decreased in a concentration-dependent manner. Under all conditions where LDL and HDL levels were varied, LTIP consistently resulted in a PR >1 for CE transfer from HDL. Short-term experiments with radiolabeled lipoproteins and either partially purified or homogenous CETP confirmed these observations and further demonstrated that CETP has a strong predilection to mediate homoexchange (bidirectional transfer of the same lipid) rather than heteroexchange (CE for TG); LTIP had no effect on the selection of CE or TG by CETP or its mechanism of action. We conclude, in contrast to current opinion, that CETP has no preference for CE in HDL versus LDL, suggesting that the previously reported stable binding of CETP to HDL does not result in selective transfer from this lipoprotein. These data suggest that LTIP is responsible for the preferential transfer of CE from HDL that occurs in plasma. CETP and LTIP cooperatively determine the extent of CETP-mediated remodeling of individual lipoprotein fractions.  (+info)

Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. (2/740)

The plasma cholesteryl ester transfer protein (CETP) plays a major role in the catabolism of HDL cholesteryl ester (CE). CETP transgenic mice have decreased HDL cholesterol levels and have been reported to have either increased or decreased early atherosclerotic lesions. To evaluate the impact of CETP expression on more advanced forms of atherosclerosis, we have cross-bred the human CETP transgene into the apoE knock-out (apoE0) background with and without concomitant expression of the human apo A-I transgene. In this model the CETP transgene is induced to produce plasma CETP levels 5 to 10 times normal human levels. CETP expression resulted in moderately reduced HDL cholesterol (34%) in apoE0 mice and markedly reduced HDL cholesterol (76%) in apoE0/apoA1 transgenic mice. After injection of radiolabeled HDL CE, the CETP transgene significantly delayed the clearance of CE radioactivity from plasma in apoE0 mice, but accelerated the clearance in apoE0/apoA1 transgenic mice. ApoE0/CETP mice displayed an increase in mean atherosclerotic lesion area on the chow diet (approximately 2-fold after 2 to 4 months, and 1.4- to 1.6-fold after 7 months) compared with apoE0 mice (P<0.02). At 7 months apoA1 transgene expression resulted in a 3-fold reduction in mean lesion area in apoE0 mice (P<0.001). In the apoE0/apoA1 background, CETP produced an insignificant 1.3- to 1.7-fold increase in lesion area. In further studies the CETP transgene was bred onto the LDL receptor knock-out background (LDLR0). After 3 months on the Western diet, the mean lesion area was increased 1.8-fold (P<0.01) in LDLR0/CETP mice, compared with LDLR0 mice. These studies indicate that CETP expression leads to a moderate increase in atherosclerosis in apoE0 and LDLR0 mice, and suggest a proatherogenic effect of CETP activity in metabolic settings in which clearance of remnants or LDL is severely impaired. However, apoA1 overexpression has more dramatic protective effects on atherosclerosis in apoE0 mice, which are not significantly reversed by concomitant expression of CETP.  (+info)

A cholesteryl ester transfer protein gene mutation and vascular disease in dialysis patients. (3/740)

Among patients undergoing maintenance hemodialysis, a decreased high-density lipoprotein cholesterol (HDL-C) concentration is among the most common abnormalities of lipid metabolism and apparently is an independent risk factor for vascular disease. A common missense mutation of cholesteryl ester transfer protein gene, D442G (Asp 442 to Gly), increases HDL-C levels through the reduced activity of cholesteryl ester transfer from HDL to VLDL, but the mutation also may lead to reduced activity of reverse cholesterol transport. To investigate the effect of the D442G polymorphism on atherosclerotic complications in dialysis patients, the genotype and allele frequency of the polymorphism were determined in 414 unselected dialysis patients and 220 control subjects, and postprandial serum lipid levels were measured in the dialysis patients. A similar genotype distribution was found between hemodialysis patients and healthy control subjects, and in dialysis patients with and without vascular disease. Serum levels of total cholesterol and HDL-C did not differ between patients with and without the mutation and in patients with and without vascular disease. However, patients with sub-median HDL-C levels (<45 mg/dl) had an independent odds ratio of 1.8 for vascular disease (95% confidence interval, 1.04 to 3.2; P < 0.05). In this low-HDL-C subgroup, patients with the D442G mutation had a significantly higher prevalence of vascular disease than those with no mutation (54.5% versus 24.4%; P < 0.05), and an independent odds ratio of 4.9 (95% confidence interval, 1.05 to 22.65; P < 0.05). In conclusion, the D442G mutation is an independent risk factor for atherosclerotic complications in dialysis patients with HDL-C levels below 45 mg/dl.  (+info)

Structure-specific inhibition of cholesteryl ester transfer protein by azaphilones. (4/740)

The effect of thirteen different fungal azaphilones, which have a common 6-iso-chromane-like ring, was tested on cholesteryl ester transfer protein (CETP) activity in vitro. Chaetoviridin B showed the most potent inhibitory activity with an IC50 value of < 6.2 microM, followed by sclerotiorin with an IC50 value of 19.4 microM. Rotiorin, chaetoviridin A and rubrorotiorin had moderate inhibitory activity (IC50 ; 30 approximately 40 microM), but others showed very weak or no inhibitory activity. The relationship between the structures and their inhibitory activity indicated that the presence of an electrophilic ketone(s) and/or enone(s) at both C-6 and C-8 positions in the isochromane-like ring is essential for eliciting CETP inhibitory activity. The transfer activity of both CE and TG was inhibited by sclerotiorin to approximately the same extent (IC50: 14.4 and 10.3 microM, respectively). A model of the reaction suggested that sclerotiorin reacts with a primary amine of amino acids such as lysine in the protein to form a covalent bond.  (+info)

Estrogen-mediated increases in LDL cholesterol and foam cell-containing lesions in human ApoB100xCETP transgenic mice. (5/740)

The murine double transgenic mouse expressing both human apoB100 and cholesteryl ester transfer protein (CETP), has been used as a model to understand the effects mediated by various therapeutic modalities on serum lipoproteins and on atherosclerotic lesion progression. In the present study the effects of estrogen therapy on serum lipoproteins were investigated after mice were placed on an atherosclerotic diet. The daily oral administration of 20 or 100 microg/kg of 17 alpha-ethinyl estradiol resulted in a significant, dose-dependent increase in LDL cholesterol over a 20-week regimen. These differences were apparent by 6 weeks and further increases were observed through the 20-week period. Although CETP did result in a reduction in total HDL, estrogen did not have any impact on the amount of CETP activity associated with the HDL particles. The significant increase in LDL cholesterol was associated with increases in the amount of apoB100 and B48 and apoE-containing particles. Hepatic apoB message levels, however, were not different between the experimental groups. Although the extent of atherosclerotic lesions was modest, <0.5% of the aortic surface area in the vehicle group, the high-dose estrogen group, showed an increase in lesion area consistent with the elevation in LDL cholesterol. These lesions, primarily restricted to the aortic root and aortic semilunar valves, were more intensely stained with Oil Red O in the high-dose estrogen group when compared with the vehicle controls.  (+info)

Wiedendiol-A inhibits cholesteryl ester binding to its transfer protein. (6/740)

AIM: To study the wiedendiol-A (W-A) inhibition mechanism of plasma cholesteryl ester (CE) transfer protein (CETP) on the transfer of CE. METHODS: Using gel filtration method. RESULTS: W-A at 30 mumol.L-1 inhibited association of CE with CETP by 76% and CETP transfer activity by 81%. In addition, W-A enhanced binding of TP2, a monoclonal antibody with a CETP C-terminal epitope which is involved in CE binding, to CETP, suggesting a W-A-induced conformational change at the epitope for increased TP2 binding. When CETP activity was measured by varying high-density lipoproteins (HDL) concentration, the apparent Vmax of CE transfer was inhibited by 74% and 83% in the presence of W-A at 14 and 25 mumol.L-1, respectively, while the apparent K(m) of HDL for CETP did not change. CONCLUSION: W-A action is mediated through interaction between W-A and CETP, but not through those between W-A and lipoproteins.  (+info)

Remodeling of HDL by CETP in vivo and by CETP and hepatic lipase in vitro results in enhanced uptake of HDL CE by cells expressing scavenger receptor B-I. (7/740)

The transport of HDL cholesteryl esters (CE) from plasma to the liver involves a direct uptake pathway, mediated by hepatic scavenger receptor B-I (SR-BI), and an indirect pathway, involving the exchange of HDL CE for triglycerides (TG) of TG-rich lipoproteins by cholesteryl ester transfer protein (CETP). We carried out HDL CE turnover studies in mice expressing human CETP and/or human lecithin:cholesterol acyltransferase (LCAT) transgenes on a background of human apoA-I expression. The fractional clearance of HDL CE by the liver was delayed by LCAT transgene, while the CETP transgene increased it. However, there was no incremental transfer of HDL CE radioactivity to the TG-rich lipoprotein fraction in mice expressing CETP, suggesting increased direct removal of HDL CE in the liver. To evaluate the possibility that this might be mediated by SR-BI, HDL isolated from plasma of the different groups of transgenic mice was incubated with SR-BI transfected or control CHO cells. HDL isolated from mice expressing CETP showed a 2- to 4-fold increase in SR-BI-mediated HDL CE uptake, compared to HDL from mice lacking CETP. The addition of pure CETP to HDL in cell culture did not lead to increased selective uptake of HDL CE by cells. However, when human HDL was enriched with TG by incubation with TG-rich lipoproteins in the presence of CETP, then treated with hepatic lipase, there was a significant enhancement of HDL CE uptake. Thus, the remodeling of human HDL by CETP, involving CE;-TG interchange, followed by the action of hepatic lipase (HL), leads to the enhanced uptake of HDL CE by cellular SR-BI. These observations suggest that in animals such as humans in which both the selective uptake and CETP pathways are active, the two pathways could operate in a synergistic fashion to enhance reverse cholesterol transport.  (+info)

Characterization of a cholesterol response element (CRE) in the promoter of the cholesteryl ester transfer protein gene: functional role of the transcription factors SREBP-1a, -2, and YY1. (8/740)

Cholesteryl ester transfer protein (CETP) is expressed in human adipocytes, where it acts to promote selective uptake of HDL-CE (Benoist, F., M. McDonnell, P. Lau, R. Milne, and R. McPherson. 1997. J. Biol. Chem. 272: 23572;-23577). In contrast to other major sterol-responsive genes such as 3-hydroxy-3-methylglutaryl coenzyme A reductase CETP expression is up-regulated rather than down-regulated in response to cholesterol. To define elements involved in cholesterol-mediated up-regulation of CETP gene expression, deletion derivatives of the CETP promoter were cloned into a luciferase reporter construct and transfected into the human liposarcoma cell line SW872, cultured in the presence or absence of lipoproteins. A fragment associated with a positive cholesterol response was identified between nucleotides -361 and -138 (relative to the initiation site of transcription) of the promoter. This region contains a tandem repeat of a sequence known to mediate sterol dependent regulation of the hamster HMG-CoA reductase gene. We have putatively denoted this region, the cholesterol response element (CRE). Using gel mobility shift assays we demonstrate that both YY1 and SREBP-1 interact with the CRE of CETP. Furthermore, in transient co-transfection experiments, both YY1 and SREBP-1a were found to trans-activate, in a dose-dependent manner, the luciferase activity of constructs harboring the CRE. We also demonstrate that SREBP-2, is able to trans-activate a luciferase construct harboring the CRE although much less effectively as compared to SREBP-1. Finally, functional analysis of the CRE confirms its regulatory role in modulating CETP gene expression through its interaction with YY1 and SREBP-1a.  (+info)