The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. (1/103)

Staphylococcus aureus and Staphylococcus epidermidis possess a 42-kDa cell wall transferrin-binding protein (Tpn) which is involved in the acquisition of transferrin-bound iron. To characterize this protein further, cell wall fractions were subjected to two-dimensional sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis blotted, and the N-terminus of Tpn was sequenced. Comparison of the first 20 amino acid residues of Tpn with the protein databases revealed a high degree of homology to the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Analysis of staphylococcal cell wall fractions for GAPDH activity confirmed the presence of a functional enzyme which, like Tpn, is regulated by the availability of iron in the growth medium. To determine whether Tpn is responsible for this GAPDH activity, it was affinity purified with NAD+ agarose. Both S. epidermidis and S. aureus Tpn catalyzed the conversion of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate. In contrast, Staphylococcus saprophyticus, which lacks a Tpn, has no cell wall-associated GAPDH activity. Native polyacrylamide gel electrophoresis of the affinity-purified Tpn revealed that it was present in the cell wall as a tetramer, consistent with the structures of all known cytoplasmic GAPDHs. Furthermore, the affinity-purified Tpn retained its ability to bind human transferrin both in its native tetrameric and SDS-denatured monomeric forms. Apart from interacting with human transferrin, Tpn, in common with the group A streptococcal cell wall GAPDH, binds human plasmin. Tpn-bound plasmin is enzymatically active and therefore may contribute to the ability of staphylococci to penetrate tissues during infections. These studies demonstrate that the staphylococcal transferrin receptor protein, Tpn, is a multifunctional cell wall GAPDH.  (+info)

Purification of a 76-kDa iron-binding protein from human seminal plasma by affinity chromatography specific for ribonuclease: structural and functional identity with milk lactoferrin. (2/103)

A pink-colored iron-binding protein has been found in large amount in human seminal plasma and identified as a lactoferrin isoform. Its purification, by a modification of a three-step chromatography procedure developed in an attempt to purify a ribonuclease from the same fluid, provided about 15-18 mg of pure protein from 100 ml of seminal plasma. Despite its ability to bind a ribonuclease ligand during the affinity step, the iron-binding protein did not display any detectable RNase activity in a standard assay with yeast RNA as substrate. It showed an apparent molecular weight of 76 kDa and resulted to be quite similar, if not identical, to human milk lactoferrin in many respects. Its N-terminal sequence (31 amino acid residues) starting with Arg-3 was identical to that of one of the N-terminally truncated lactoferrin variants isolated from human milk. Moreover, the amino acid sequence of a number of peptides, which represented about 23% of the entire sequence, has been also shown to be identical to that of the corresponding peptides of human milk lactoferrin. Double diffusion analysis revealed full recognition by antibodies anti-human milk lactoferrin of the human seminal plasma protein. Using immunoblotting analysis, both human milk lactoferrin and human seminal protein were recognized by antibodies anti-milk lactoferrin. When tested for its iron binding capacity, with Fe-NTA as iron donor, the protein purified was able to bind iron up to 100% saturation, as judged by absorbance at 465 nm.  (+info)

Purified meningococcal transferrin-binding protein B interacts with a secondary, strain-specific, binding site in the N-terminal lobe of human transferrin. (3/103)

Neisseria meningitidis, grown in iron-limited conditions, produces two transferrin-binding proteins (TbpA and TbpB) that independently and specifically bind human serum transferrin (hTF) but not bovine serum transferrin (bTF). We have used surface plasmon resonance to characterize the interaction between individual TbpA and TbpB and a series of full-length human-bovine chimaeric transferrins (hbTFs) under conditions of variable saturation with iron. A comparative analysis of hTF and hbTF chimaera-binding data confirmed that the major features involved in Tbp binding are located in the C-terminal lobe of hTF and that isolated TbpA can recognize distinct sites present in, or conformationally influenced by, residues 598-679. Binding by TbpB was maintained at a significant but decreased level after replacement of the entire hTF C-terminal lobe by the equivalent bovine sequence. The extent of this binding difference was dependent on the meningococcal strain and on the presence of hTF residues 255-350. This indicated that TbpB from strain SD has a secondary, strain-specific, binding site located within this region, whereas TbpB from strain B16B6 does not share this recognition site. Binding of TbpA was influenced primarily by sequence substitutions in the hTF C-terminal lobe, and co-purified TbpA and TbpB (TbpA+B) was functionally distinct from either of its components. The limited divergence between hTF and bTF has been related to observed differences in binding by Tbps and has been used to delineate those regions of hTF that are important for such interactions.  (+info)

Immunization with recombinant transferrin binding protein B enhances clearance of nontypeable Haemophilus influenzae from the rat lung. (4/103)

Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen, and heterogeneity in the surface-exposed immunodominant domains of NTHI proteins is thought to be associated with the failure of an infection to stimulate an immune response that is cross-protective against heterologous NTHI strains. The aim of this study was to assess the vaccine potential of a surface-exposed component of the NTHI human transferrin receptor, TbpB, and to determine if the antibody response elicited was cross-reactive with heterologous strains of NTHI. The efficacy of immunization with a recombinant form of TbpB (rTbpB) was determined by assessing the pulmonary clearance of viable bacteria 4 h after a live challenge with NTHI. There was a significant reduction in the number of viable bacteria in both the bronchoalveolar lavage fluid (34% for the 20-microgram dose and 58% for the 40-microgram dose) and lung homogenates (26% for the 20-microgram dose and 60% for the 40-microgram dose) of rats immunized with rTbpB compared to the control animals. While rTbpB-specific antibodies from immunized rats were nonspecific in the recognition of TbpB from six heterologous NTHI strains on Western blots, these antibodies differed in their ability to block transferrin binding to heterologous strains and to cross-react in bactericidal assays. If bactericidal antibodies are key indicators of the efficacy of the immune response in eliminating NTHI, this data suggests that while immunization with rTbpB stimulates protective responses against the homologous isolate, variability in the recognition of TbpB from heterologous isolates may limit the potential of rTbpB as an NTHI vaccine component.  (+info)

Construction and characterization of Moraxella catarrhalis mutants defective in expression of transferrin receptors. (5/103)

We have previously reported the construction of an isogenic mutant defective in expression of OmpB1, the TbpB homologue, in Moraxella catarrhalis 7169. In this report, we have extended these studies by constructing and characterizing two new isogenic mutants in this clinical isolate. One mutant is defective in expression of TbpA, and the other mutant is defective in expression of both TbpA and TbpB. These isogenic mutants were confirmed by using PCR analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and sequencing. In vitro growth studies, comparing all three mutants, demonstrated that the tbpA mutant and the tbpAB mutant were severely limited in their ability to grow with human holotransferrin as the sole source of iron. In contrast, the ompB1 (tbpB) mutant was capable of utilizing iron from human transferrin, although not to the extent of the parental strain. While affinity chromatography with human holotransferrin showed that each Tbp was capable of binding independently to transferrin, solid-phase transferrin binding studies using whole cells demonstrated that the tbpA mutant exhibited binding characteristics similar to those seen with the wild-type bacteria. However, the ompB1 (tbpB) mutant exhibited a diminished capacity for binding transferrin, and no binding was detected with the double mutant. These data suggest that the M. catarrhalis TbpA is necessary for the acquisition of iron from transferrin. In contrast, TbpB is not essential but may serve as a facilitory protein that functions to optimize this process. Together these mutants are essential to provide a more thorough understanding of iron acquisition mechanisms utilized by M. catarrhalis.  (+info)

Multilocus sequence typing and antigen gene sequencing in the investigation of a meningococcal disease outbreak. (6/103)

Multilocus sequence typing and antigen gene sequencing were used to investigate an outbreak of meningococcal disease in a university in the United Kingdom. The data obtained showed that five distinct Neisseria meningitidis strains belonging to the ET-37 complex were present in the student population during the outbreak. Three of these strains were not associated with invasive disease, and two distinct strains caused invasive disease, including several fatalities. The initial case of the disease cluster was caused by a strain distinct from that responsible for at least two subsequent cases and two cases remote from the university, which were epidemiologically linked to the outbreak. These observations were consistent with pulsed-field gel electrophoresis data, but the sequence data alone were sufficient to resolve the strains involved in the disease cluster. Interpretation of the nucleotide sequence data was more straightforward than interpretation of the fingerprint patterns, and the sequence data provided information on the genetic differences among the isolates.  (+info)

Human opsonins induced during meningococcal disease recognize transferrin binding protein complexes. (7/103)

Patient serum opsonins against transferrin binding protein A+B (TbpA+B) complexes from two Neisseria meningitidis strains (K454 and B16B6, with 85- and 68-kDa TbpB, respectively) were quantified by a functional phagocytosis and oxidative burst assay. TbpA+B complexes adsorbed to fluorescent beads were opsonized with individual acute and convalescent sera from 40 patients infected by a variety of meningococcal strains. Flow cytometric quantitation of leukocyte phagocytosis products (PP) demonstrated that disease-induced serum opsonins recognized TbpA+B, and the highest anti-TbpA+B serum opsonic activities were found between admission to hospital and 6 weeks later. The PP values obtained with TbpA+B from strain B16B6 (PP(B16B6)) were higher than those obtained with TbpA+B from strain K454 (PP(K454)), with both acute and convalescent sera (P < 0.0001), and correlated positively with higher immunoglobulin G enzyme-linked immunosorbent assay titers against TbpA+B from strain B16B6 than from strain K454 (P < 0.001). In spite of considerable variations between individuals, significant correlations were found between the PP(B16B6) and PP(K454) values, and the PP values did not depend on the variability of the TbpB proteins of the disease-causing strains. Simultaneously measured oxidative burst activity correlated closely with the PP values. We conclude that highly cross-reactive anti-TbpA+B serum opsonins are produced during meningococcal disease. The anti-TbpA+B opsonic activities were not affected by the variability of the TbpB proteins of the disease-causing strains, which further adds to the evidence for the vaccine potential of meningococcal TbpA+B complexes.  (+info)

Neisseria meningitidis expressing transferrin binding proteins of Actinobacillus pleuropneumoniae can utilize porcine transferrin for growth. (8/103)

Homologous recombination was used to generate a number of mutants of serogroup B Neisseria meningitidis B16B6 with the following characteristics: (i) an inability to bind human or porcine transferrin because of loss of both transferrin binding proteins (Tbp) A and B [strain B16B6(Str(r))/tbpA(-)B(-)] and (ii) an ability to bind porcine transferrin but not human transferrin [strain B16B6(Str(r))/tbpA(ap)B(ap)] due to replacement of the meningococcal Tbp with the Tbp of Actinobacillus pleuropneumoniae. During construction of the B16B6(Str(r))/tbpA(ap)B(ap) strain, transformants expressing only TbpA or TbpB of A. pleuropneumoniae were isolated [strains B16B6(Str(r))/tbpA(ap)B(-) and B16B6(Str(r))/tbpA(-)B(ap)]. Expression of the A. pleuropneumoniae Tbp in N. meningitidis B16B6 was iron regulated and expressed under the control of the meningococcal promoter. The relative abilities of the meningococcal transformants to bind porcine transferrin were in the order B16B6(Str(r))/tbpA(ap)B(ap) > B16B6(Str(r))/tbpA(ap)B(-) > B16B6(Str(r))/tbpA(-)B(ap). Of these transformants, only B16B6(Str(r))/tbpA(ap)B(ap) could grow in the presence of porcine transferrin as the sole iron source, achieving a growth rate similar to that of the B16B6 parent strain in the presence of human transferrin.  (+info)