Subcellular distribution and redistribution of Bcl-2 family proteins in human leukemia cells undergoing apoptosis. (1/660)

It has been suggested that the ratio of Bcl-2 family proapoptotic proteins to antiapoptotic proteins determines the sensitivity of leukemic cells to apoptosis. However, it is believed that Bcl-2 family proteins exert their function on apoptosis only when they target to the mitochondrial outer membrane. The vinblastine-resistant T-lymphoblastic leukemic cell line CEM/VLB100 has increased sensitivity to tumor necrosis factor-alpha (TNF-alpha)-induced cytochrome c release, mitochondrial respiratory inhibition, and consequently apoptosis, compared with parental CEM cells. However, there was no difference between the two cell lines in the expression of Bcl-2 family proteins Bcl-2, Bcl-XL, Bcl-XS, Bad, and Bax at the whole cell level, as analyzed by Western blotting. Bcl-2 mainly located to mitochondria and light membrane as a membrane-bound protein, whereas Bcl-XL was located in both mitochondria and cytosol. Similar levels of both Bcl-2 and Bcl-XL were present in the resting mitochondria of the two cell lines. Although the proapoptotic proteins Bcl-XS, Bad, and Bax were mainly located in the cytosol, CEM/VLB100 mitochondria expressed higher levels of these proapoptotic proteins. Subcellular redistribution of the Bcl-2 family proteins was detected in a cell-free system by both Western blotting and flow cytometry after exposure to TNF-alpha. The levels of Bcl-2 family proteins were not altered at the whole cell level by TNF-alpha. However, after exposure to TNF-alpha, Bax, Bad, and Bcl-XS translocated from the cytosol to the mitochondria of both cell lines. An increase in Bcl-2 levels was observed in CEM mitochondria, which showed resistance to TNF-alpha-induced cytochrome c release. By contrast, decreased mitochondrial Bcl-2 was observed in CEM/VLB100 cells, which released cytochrome c from the mitochondria and underwent apoptosis as detected by fluorescence microscopy. We conclude that mitochondrial levels of Bcl-2 family proteins may determine the sensitivity of leukemic cells to apoptosis and that, furthermore, these levels may change rapidly after exposure of cells to toxic stimuli.  (+info)

Dissociation of apoptosis from proliferation, protein kinase B activation, and BAD phosphorylation in interleukin-3-mediated phosphoinositide 3-kinase signaling. (2/660)

Interleukin-3 (IL-3) acts as both a growth and survival factor for many hemopoietic cells. IL-3 treatment of responsive cells leads to the rapid and transient activation of Class IA phosphoinositide-3-kinases (PI3Ks) and the serine/threonine kinase Akt/protein kinase B (PKB) and phosphorylation of BAD. Each of these molecules has been implicated in anti-apoptotic signaling in a wide range of cells. Using regulated expression of dominant-negative p85 (Deltap85) in stably transfected IL-3-dependent BaF/3 cells, we have specifically investigated the role of class IA PI3K in IL-3 signaling. The major functional consequence of Deltap85 expression in these cells is a highly reproducible, dramatic reduction in IL-3-induced proliferation. Expression of Deltap85 reduces IL-3-induced PKB phosphorylation and activation and phosphorylation of BAD dramatically, to levels seen in unstimulated cells. Despite these reductions, the levels of apoptosis observed in the same cells are very low and do not account for the reduction in IL-3-dependent proliferation we observe. These results show that Deltap85 inhibits both PKB activity and BAD phosphorylation without significantly affecting levels of apoptosis, suggesting that there are targets other than PKB and BAD that can transmit survival signals in these cells. Our data indicate that the prime target for PI3K action in IL-3 signaling is at the level of regulation of proliferation.  (+info)

Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. (3/660)

The Ca2+-activated protein phosphatase calcineurin induces apoptosis, but the mechanism is unknown. Calcineurin was found to dephosphorylate BAD, a pro-apoptotic member of the Bcl-2 family, thus enhancing BAD heterodimerization with Bcl-xL and promoting apoptosis. The Ca2+-induced dephosphorylation of BAD correlated with its dissociation from 14-3-3 in the cytosol and translocation to mitochondria where Bcl-xL resides. In hippocampal neurons, L-glutamate, an inducer of Ca2+ influx and calcineurin activation, triggered mitochondrial targeting of BAD and apoptosis, which were both suppressible by coexpression of a dominant-inhibitory mutant of calcineurin or pharmacological inhibitors of this phosphatase. Thus, a Ca2+-inducible mechanism for apoptosis induction operates by regulating BAD phosphorylation and localization in cells.  (+info)

Trophic support promotes survival of bcl-x-deficient telencephalic cells in vitro. (4/660)

Survival of immature neurons is regulated by Bcl-xL, as targeted disruption of bcl-x significantly increases cell death in vivo and in vitro. Death of cultured bcl-x-deficient and wild-type telencephalic cells can be prevented by fetal calf serum or chemically-defined medium (ITS), suggesting trophic factors in these media potentiate survival through a pathway independent of Bcl-xL. Addition of trophic factors to basal medium revealed that insulin and insulin-like growth factors (IGFs), but not other trophic factors, reduced apoptosis of wild-type and bcl-x-deficient telencephalic cells. Antibodies raised against IGF-I receptors and wortmannin both attenuated the effects of IGF-I, indicating survival was mediated by IGF-I receptors and phosphatidylinositol 3'-kinase signaling, whereas effects of ITS were only partially reduced by these agents. The survival promoting effects of ITS were reduced in cells lacking both bcl-x and bcl-2, indicating Bcl-2 plays a supportive role to Bcl-xL in maintaining telencephalic cell survival. Furthermore, the ratio of expression of the pro-apoptotic bax gene to the anti-apoptotic bcl-2 gene was reduced in bcl-x-deficient cultures grown in ITS, suggesting that the interaction between these bcl-2 family members may, in part, regulate a Bcl-xL independent survival pathway. Finally, the pro-apoptotic bad gene does not appear to play a role in these interactions as targeted disruption of bad did not alter apoptosis in telencephalic cultures.  (+info)

Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. (5/660)

Signaling pathways between cell surface receptors and the BCL-2 family of proteins regulate cell death. Survival factors induce the phosphorylation and inactivation of BAD, a proapoptotic member. Purification of BAD kinase(s) identified membrane-based cAMP-dependent protein kinase (PKA) as a BAD Ser-112 (S112) site-specific kinase. PKA-specific inhibitors blocked the IL-3-induced phosphorylation on S112 of endogenous BAD as well as mitochondria-based BAD S112 kinase activity. A blocking peptide that disrupts type II PKA holoenzyme association with A-kinase-anchoring proteins (AKAPs) also inhibited BAD phosphorylation and eliminated the BAD S112 kinase activity at mitochondria. Thus, the anchoring of PKA to mitochondria represents a focused subcellular kinase/substrate interaction that inactivates BAD at its target organelle in response to a survival factor.  (+info)

Developmental regulation of Bcl-2 family protein expression in the involuting mammary gland. (6/660)

Epithelial cells within the mammary gland undergo developmental programmes of proliferation and apoptosis during the pregnancy cycle. After weaning, secretory epithelial cells are removed by apoptosis. To determine whether members of the Bcl-2 gene family could be involved in regulating this process, we have examined whether changes in their expression occur during this developmental apoptotic program in vivo. Bax and Bcl-x were evenly expressed throughout development. However, expression of Bak and Bad was increased during late pregnancy and lactation, and the proteins were present during the time of maximal apoptotic involution. Thereafter, their levels declined. In contrast, Bcl-w was expressed in pregnancy and lactation but was downregulated at the onset of apoptosis. Bcl-2 was not detected in lactating or early involuting mammary gland. Thus, the pro-apoptotic proteins Bax, Bak and Bad, as well as the death-suppressors Bcl-x, Bcl-2 and Bcl-w, are synthesised in mouse mammary gland, and dynamic changes in the expression profiles of these proteins occurs during development. To determine if changes in Bak and Bcl-w expression could regulate mammary apoptosis, their effect on cultured mouse mammary epithelial cells was examined in transient transfection assays. Enforced expression of Bak induced rapid mammary apoptosis, which could be suppressed by coexpression of Bcl-w. In extracts of mammary tissue in vivo, Bak heterodimerized with Bcl-x whereas Bax associated with Bcl-w, but Bak/Bcl-w heterodimers were not detected. Thus, Bak and Bcl-w may regulate cell death through independent pathways. These results support a model in which mammary epithelial cells are primed for apoptosis during the transition from pregnancy to lactation by de novo expression of the death effectors Bak and Bad. It is suggested that these proteins are prevented from triggering apoptosis by anti-apoptotic Bcl-2 family proteins until involution, when the levels of Bcl-w decline. Our study provides evidence that regulated changes in the expression of cell death genes may contribute to the developmental control of mammary apoptosis.  (+info)

Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. (7/660)

Protein kinase B lies "downstream" of phosphatidylinositide (PtdIns) 3-kinase and is thought to mediate many of the intracellular actions of insulin and other growth factors. Here we show that FKHR, a human homologue of the DAF16 transcription factor in Caenorhabditis elegans, is rapidly phosphorylated by human protein kinase Balpha (PKBalpha) at Thr-24, Ser-256, and Ser-319 in vitro and at a much faster rate than BAD, which is thought to be a physiological substrate for PKB. The same three sites, which all lie in the canonical PKB consensus sequences (Arg-Xaa-Arg-Xaa-Xaa-(Ser/Thr)), became phosphorylated when FKHR was cotransfected with either PKB or PDK1 (an upstream activator of PKB). All three residues became phosphorylated when 293 cells were stimulated with insulin-like growth factor 1 (IGF-1). The IGF-1-induced phosphorylation was abolished by the PtdIns 3-kinase inhibitor wortmannin but not by PD 98059 (an inhibitor of the mitogen-activated protein kinase cascade) or by rapamycin. These results indicate that FKHR is a physiological substrate of PKB and that it may mediate some of the physiological effects of PKB on gene expression. DAF16 is known to be a component of a signaling pathway that has been partially dissected genetically and includes homologues of the insulin/IGF-1 receptor, PtdIns 3-kinase and PKB. The conservation of Thr-24, Ser-256, and Ser-319 and the sequences surrounding them in DAF16 therefore suggests that DAF16 is also a direct substrate for PKB in C. elegans.  (+info)

Cytokine-induced protein kinase B activation and Bad phosphorylation do not correlate with cell survival of hemopoietic cells. (8/660)

Activation of phosphoinositide-3 kinases (PI3Ks), their downstream target protein kinase B (PKB), and phosphorylation of Bad have all been implicated in survival signaling in many systems. However, it is not known whether these events are sufficient or necessary to universally prevent apoptosis. To address this issue, we have used three different factor-dependent hemopoietic cell lines, MC/9, BaF/3, and factor-dependent (FD)-6, which respond to a range of cytokines, to investigate the relationship between PI3K, PKB, and Bad activity with survival. The cytokines IL-3, IL-4, stem cell factor (SCF), GM-CSF, and insulin all induced the rapid and transient activation of PKB in responsive cell lines. In all cases, cytokine-induced PKB activation was sensitive to inhibition by the PI3K inhibitor, LY294002. However, dual phosphorylation of the proapoptotic protein Bad was found not to correlate with PKB activation. In addition, we observed cell-type-specific differences in the ability of the same cytokine to induce Bad phosphorylation. Whereas IL-4 induced low levels of dual phosphorylation of Bad in FD-6, it was unable to in MC/9 or BaF/3. Insulin, which was the most potent inducer of PKB in FD-6, induced barely detectable Bad phosphorylation. In addition, the ability of a particular cytokine to induce PKB activity did not correlate with its ability to promote cell survival and/or proliferation. These data demonstrate that, in hemopoietic cells, activation of PKB does not automatically confer a survival signal or result in phosphorylation of Bad, implying that other survival pathways must be involved.  (+info)