Further evidence that prostaglandins inhibit the release of noradrenaline from adrenergic nerve terminals by restriction of availability of calcium. (1/3278)

1 Guinea-pig vasa deferentia were continuously superfused after labelling the transmitter stores with [3H](-)-noradrenaline. Release of [3H]-(-)-noradrenaline was induced by transmural nerve stimulation. 2 Prostglandin E2 (14 nM) drastically reduced the release of [3H]-(-)-noradrenaline, while tetraethylammonium (2 mM), rubidium (6 mM), phenoxybenzamine (3 muM) each in the presence or absence of Uptake 1 or 2 blockade, and prolonged pulse duration (from 0.5 to 2.0 ms) all significantly increased the release of [3H]-(-)-noradrenaline per nerve impulse. 3 The inhibitory effect of prostaglandin E2 on evoked release of [3H]-(-)-noradrenaline was significantly reduced by tetraethylammonium, rubidium and prolonged pulse duration, whilst it was actually enhanced by phenoxybenzamine. This indicates that increased release of noradrenaline per nerve impulse does not per se counteract the inhibitory effect of prostaglandin E2. 4 It is concluded that tetraethylammonium, rubidium and prolonged pulse duration counteracted the inhibitory effect of prostaglandin E2 on T3H]-(-)-noradrenaline release by promoting calcium influx during the nerve action potential. The results are consistent with, and add more weight to the view that prostaglandins inhibit the release of noradrenaline by restriction of calcium availability.  (+info)

Stimulation of renin release from rabbit renal cortex by arachidonic acid and prostaglandin endoperoxides. (2/3278)

The mechanism by which renal prostaglandins stimulate renin secretion in vivo is unknown. In this in vitro study we measured the effects of activation of the prostaglandin (PG) system on renin release from slices of rabbit renal cortex. The PG precursor arachidonic acid (C20:4), a natural PG endoperoxide (PGG2), two stable synthetic PG endoperoxide analogues (EPA I and II), PGE2, PGF2alpha, and two different PG synthesis inhibitors [indomethacin and 5,8,11,14-eicosatetraynoic acid (ETA)] were used to evaluate the possibility of a direct action of the cortical PG system on renin secretion. Renin release increased significantly with time after addition of C20:4, PGG2, EPA I, and EPA II to the incubation medium. Stimulation of renin release was se-related for C20:4 in concentrations of 0.6 to 4.5 X 10(-6) M, for EPA I in concentrations of 0.7 to 2.8 X 10(-6) M, and for EPA II in concentrations of 1.4 to 14.0 X 10(-6) M. Indomethacin (10(-4) M) and ETA (10(-4) M) significantly decreased basal renin release as well as the renin release stimulated by C20:4 and EPA I. PGE2(10(-12) to 10(-6) M) had no effect on renin release, whereas PGF2alpha (10(-12) to 10(-6) M) decreased renin release in a dose-dependent manner. These data raise the possibility of a direct action of the renal cortical PG system on renin secretion. The results further indicate that stimulation of renin release by C20:4 may depend more specifically on the action of PG endoperoxides than on the primary prostaglandins.  (+info)

Acute renal failure caused by nephrotoxins. (3/3278)

Renal micropuncture studies have greatly changed our views on the pathophysiology of acute renal failure caused by nephrotoxins. Formerly, this type of renal insufficiency was attributed to a direct effect of the nephrotoxins on tubule epithelial permeability. According to that theory, glomerular filtration was not greatly diminished, the filtrate formed being absorbed almost quantitatively and nonselectively across damaged tubule epithelium. Studies in a wide variety of rat models have now shown glomerular filtration to be reduced to a level which will inevitably cause renal failure in and of itself. Passive backflow of filtrate across tubular epithelium is either of minor degree or nonexistent even in models where frank tubular necrosis has occurred. This failure of filtration cannot be attributed to tubular obstruction since proximal tubule pressure is distinctly subnormal in most models studied. Instead, filtration failure appears best attributed to intrarenal hemodynamic alterations. While certain facts tend to incriminate the renin-angiotensin system as the cause of the hemodynamic aberrations, others argue to the contrary. The issue is underactive investigation.  (+info)

Proteoglycan involvement in polyamine uptake. (4/3278)

We have evaluated the possible role of proteoglycans in the uptake of spermine by human lung fibroblasts. Exogenous glycosaminoglycans behaved as competitive inhibitors of spermine uptake, the most efficient being heparan sulphate (Ki=0.16+/-0.04 microM). Treatment of fibroblasts with either heparan sulphate lyase, p-nitrophenyl-O-beta-D-xylopyranoside or chlorate reduced spermine uptake considerably, whereas chondroitin sulphate lyase had a limited effect. Inhibition of polyamine biosynthesis with alpha-difluoromethylornithine resulted in an increase of cell-associated heparan sulphate proteoglycans exhibiting higher affinity for spermine. The data indicate a specific role for heparan sulphate proteoglycans in the uptake of spermine by fibroblasts. Spermine uptake by pgsD-677, a mutant Chinese hamster ovary cell defective in heparan sulphate biosynthesis, was only moderately reduced (20%) compared with wild-type cells. Treatment of mutant cells with the above-mentioned xyloside resulted in a greater reduction of endogenous proteoglycan production as well as a higher inhibition of spermine uptake than in wild-type cells. Moreover, treatment with chondroitin sulphate lyase resulted in a selective inhibition of uptake in mutant cells, indicating a role for chondroitin/dermatan sulphate proteoglycans in the uptake of spermine by these cells. Fibroblasts, made growth-dependent on exogenous spermine by alpha-difluoromethylornithine treatment, were growth-inhibited by heparan sulphate or beta-D-xyloside, which might have future therapeutical implications.  (+info)

Potent immunoregulatory effects of Salmonella typhi flagella on antigenic stimulation of human peripheral blood mononuclear cells. (5/3278)

A key function of monocytes/macrophages (Mphi) is to present antigens to T cells. However, upon interaction with bacteria, Mphi lose their ability to effectively present soluble antigens. This functional loss was associated with alterations in the expression of adhesion molecules and CD14 and a reduction in the uptake of soluble antigen. Recently, we have demonstrated that Salmonella typhi flagella (STF) markedly decrease CD14 expression and are potent inducers of proinflammatory cytokine production by human peripheral blood mononuclear cells (hPBMC). In order to determine whether S. typhi and soluble STF also alter the ability of Mphi to activate T cells to proliferate to antigens and mitogens, hPBMC were cultured in the presence of tetanus toxoid (TT) or phytohemagglutinin (PHA) and either killed whole-cell S. typhi or purified STF protein. Both whole-cell S. typhi and STF suppressed proliferation to PHA and TT. This decreased proliferation was not a result of increased Mphi production of nitric oxide, prostaglandin E2, or oxygen radicals or the release of interleukin-1beta, tumor necrosis factor alpha, interleukin-6, or interleukin-10 following exposure to STF. However, the ability to take up soluble antigen, as determined by fluorescein isothiocyanate-labeled dextran uptake, was reduced in cells cultured with STF. Moreover, there was a dramatic reduction in the expression of CD54 on Mphi after exposure to STF. These results indicate that whole-cell S. typhi and STF have the ability to alter in vitro proliferation to soluble antigens and mitogens by affecting Mphi function.  (+info)

Inhibition of prostaglandin synthesis up-regulates cyclooxygenase-2 induced by lipopolysaccharide and peroxisomal proliferators. (6/3278)

Primary cultures of fetal hepatocytes expressed cyclooxygenase-2 (COX-2) upon stimulation with bacterial lipopolysaccharide (LPS) or peroxisomal proliferators. This enzyme was active and a good correlation between the mRNA levels, the amount of protein, and the synthesis of prostaglandin E2 was observed. However, when cells were incubated in the presence of indomethacin or the COX-2-specific inhibitor NS398, the amount of COX-2 protein increased 5-fold after activation with LPS and 2-fold after treatment with clofibrate. This up-regulation of COX-2 was not observed at the mRNA level. The mechanism of protein accumulation might involve either a direct stabilization of the enzyme by the inhibitors or the absence of prostaglandins involved in the regulation of its turnover. Among the prostaglandins assayed, only 15-deoxy-Prostaglandin J2 exerted a statistically significant decrease in the COX-2 levels in cells stimulated with LPS or LPS plus NS398. The accumulation of COX-2 in the presence of inhibitors was also observed in peritoneal macrophages treated under identical conditions. These results indicate that COX-2 protein accumulates after enzyme inhibition, and because removal of the inhibitors restored the enzyme activity, suppression of treatment with reversible COX-2 inhibitors may cause a transient overproduction of prostaglandins.  (+info)

Cytosolic phospholipase A2 in rat decidual cells: evidence for its role in decidualization. (7/3278)

We investigated the existence and possible role of cytosolic phospholipase A2 (cPLA2) in rat decidualized uteri. PLA2 activity in the cytosol of a decidualized uterine horn, induced by intraluminal oil infusion, was significantly higher than that in contralateral intact horn. The activity was almost completely depressed by cPLA2 inhibitors including arachidonyl trifluoromethyl ketone (ATK). The immunoreactive signals for cPLA2 were intense in decidua and glandular epithelial cells. In vivo administration of ATK (0.1-100 microg) caused a dose-dependent inhibition of decidualization. These results show the presence of cPLA2 and its probable implication in decidualization in rat uterus.  (+info)

Inhibition of endothelium-dependent hyperpolarization by endothelial prostanoids in guinea-pig coronary artery. (8/3278)

1. In smooth muscle of the circumflex coronary artery of guinea-pig, acetylcholine (ACh, 10(-6) M) produced an endothelium-dependent hyperpolarization consisting of two components. An initial component that occurs in the presence of ACh and a slow component that developed after ACh had been withdrawn. Each component of the hyperpolarization was accompanied by an increase in membrane conductance. 2. Indomethacin (5 x 10(-6) M) or diclofenac (10(-6) M), both inhibitors of cyclooxygenase, abolished only the slow hyperpolarization. The initial hyperpolarization was not inhibited by diclofenac nor by nitroarginine, an inhibitor of nitric oxide synthase. 3. Both components of the ACh-induced hyperpolarization were abolished in the presence of atropine (10(-6) M) or high-K solution ([K+]0 = 29.4 mM). 4. The interval between ACh-stimulation required to generate an initial hyperpolarization of reproducible amplitude was 20 min or greater, but it was reduced to less than 5 min after inhibiting cyclooxygenase activity. Conditioning stimulation of the artery with substance P (10(-7) M) also caused a long duration (about 20 min) inhibition of the ACh-response. 5. The amplitude of the hyperpolarization generated by Y-26763, a K+-channel opener, was reproducible within 10 min after withdrawal of ACh. 6. Exogenously applied prostacyclin (PGI2) hyperpolarized the membrane and reduced membrane resistance in concentrations over 2.8 x 10(-9)M. 7. At concentrations below threshold for hyperpolarization and when no alteration of membrane resistance occurred, PGI2 inhibited the initial component of the ACh-induced hyperpolarization. 8. It is concluded that endothelial prostanoids, possibly PGI2, have an inhibitory action on the release of endothelium-derived hyperpolarizing factor.  (+info)