Treatment of congenital erythropoietic porphyria in children by allogeneic stem cell transplantation: a case report and review of the literature. (1/35)

Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder of porphyrin metabolism in which the genetic defect is the deficiency of uroporphyrinogen III cosynthase (UIIIC). Deficiency of this enzyme results in an accumulation of high amounts of uroporphyrin I in all tissues leading to hemolytic anemia, splenomegaly, erythrodontia, bone fragility, exquisite photosensitivity and mutilating skin lesions. We describe the case of a 23-month-old boy who was cured of his CEP by a matched-sibling allogeneic bone marrow transplant, and review the published clinical experience regarding transplantation in this disease. He is alive and disease-free 15 months post transplant. All of his disease manifestations except for the erythrodontia have resolved. His UIIIC level and stool and erythrocyte porphyrin metabolites have almost completely corrected. He is the sixth child reported to be cured of this disease by stem cell transplantation, five cases being long-term survivors. If patients with this disease have an HLA-matched sibling, then stem cell transplantation should be strongly considered because this is currently the only known curative therapy.  (+info)

Uroporphyrinogen III synthase erythroid promoter mutations in adjacent GATA1 and CP2 elements cause congenital erythropoietic porphyria. (2/35)

Congenital erythropoietic porphyria, an autosomal recessive inborn error of heme biosynthesis, results from the markedly deficient activity of uroporphyrinogen III synthase. Extensive mutation analyses of 40 unrelated patients only identified approximately 90% of mutant alleles. Sequencing the recently discovered erythroid-specific promoter in six patients with a single undefined allele identified four novel mutations clustered in a 20-bp region: (a) a -70T to C transition in a putative GATA-1 consensus binding element, (b) a -76G to A transition, (c) a -86C to A transversion in three unrelated patients, and (d) a -90C to A transversion in a putative CP2 binding motif. Also, a -224T to C polymorphism was present in approximately 4% of 200 unrelated Caucasian alleles. We inserted these mutant sequences into luciferase reporter constructs. When transfected into K562 erythroid cells, these constructs yielded 3 +/- 1, 54 +/- 3, 43 +/- 6, and 8 +/- 1%, respectively, of the reporter activity conferred by the wild-type promoter. Electrophoretic mobility shift assays indicated that the -70C mutation altered GATA1 binding, whereas the adjacent -76A mutation did not. Similarly, the -90C mutation altered CP2 binding, whereas the -86A mutation did not. Thus, these four pathogenic erythroid promoter mutations impaired erythroid-specific transcription, caused CEP, and identified functionally important GATA1 and CP2 transcriptional binding elements for erythroid-specific heme biosynthesis.  (+info)

Correction of deficient CD34+ cells from peripheral blood after mobilization in a patient with congenital erythropoietic porphyria. (3/35)

Congenital erythropoietic porphyria (CEP) is an inherited disease due to a deficiency in the uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme pathway. It is characterized by accumulation of uroporphyrin I in the bone marrow, peripheral blood, and other organs. The onset of most cases occurs in infancy and the main symptoms are cutaneous photosensitivity and hemolysis. For severe transfusion-dependent cases, when allogeneic cell transplantation cannot be performed, autografting of genetically modified primitive/stem cells is the only alternative. In the present study, efficient mobilization of peripheral blood primitive CD34(+) cells was performed on a young adult CEP patient. Retroviral transduction of this cell population with the therapeutic human UROS (hUS) gene resulted in both enzymatic and metabolic correction of CD34(+)-derived cells, as demonstrated by the increase in UROS activity and by a 53% drop in porphyrin accumulation. A 10-24% gene transfer efficiency was achieved in the most primitive cells, as demonstrated by the expression of enhanced green fluorescent protein (EGFP) in long-term culture-initiating cells (LTC-IC). Furthermore, gene expression remained stable during in vitro erythroid differentiation. Therefore, these results are promising for the future treatment of CEP patients by gene therapy.  (+info)

Crystal structure of human uroporphyrinogen III synthase. (4/35)

Uroporphyrinogen III synthase, U3S, the fourth enzyme in the porphyrin biosynthetic pathway, catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrino gen III, which is used in several different pathways to form heme, siroheme, chlorophyll, F(430) and vitamin B(12). U3S activity is essential in all organisms, and decreased activity in humans leads to the autosomal recessive disorder congenital erythropoetic porphyria. We have determined the crystal structure of recombinant human U3S at 1.85 A resolution. The protein folds into two alpha/beta domains connected by a beta-ladder. The active site appears to be located between the domains, and variations in relative domain positions observed between crystallographically independent molecules indicates the presence of flexibility that may be important in the catalytic cycle. Possible mechanisms of catalysis were probed by mutating each of the four invariant residues in the protein that have titratable side chains. Additionally, six other highly conserved and titratable side chains were also mutated. In no case, however, did one of these mutations abolish enzyme activity, suggesting that the mechanism does not require acid/base catalysis.  (+info)

Late-onset erythropoietic porphyria caused by a chromosome 18q deletion in erythroid cells. (5/35)

The erythropoietic porphyrias, erythropoietic protoporphyria and congenital erythropoietic porphyria, result from germline mutations in the ferrochelatase gene and uroporphyrinogen III synthase gene, respectively. Both conditions normally present in childhood but rare cases with onset past the age of 40 y have been reported. Here we show that late-onset erythropoietic protoporphyria can be caused by deletion of the ferrochelatase gene in hematopoietic cells with clonal expansion as part of the myelodysplastic process. This is the first direct demonstration of porphyria produced by an acquired molecular defect restricted to one tissue. Some other cases of late-onset erythropoietic porphyria may be explained by a similar mechanism.  (+info)

A rare case of porphyria. (6/35)

INTRODUCTION: Congenital erythropoietic porphyria is one of the rare forms of an intriguing group of metabolic disorders known as porphyrias. Less than 200 cases have been reported in the literature. CLINICAL PRESENTATION: We report the case of a 27-year-old gentleman who had the clinical profile suggestive of porphyria, now presenting with anaemia. The type of porphyria was found to be congenital erythropoietic porphyria by biochemical assay and cause for anaemia was haemolysis, a well-known association with the erythropoietic porphyrias. TREATMENT: The management of porphyrias is essentially symptomatic. He was treated with blood transfusions and haematinics. CONCLUSION: The patient improved symptomatically and he is on regular followup. With the development of gene therapy, a specific cure for this rare type of porphyria is expected in the near future.  (+info)

Congenital erythropoietic porphyria: report of a novel mutation with absence of clinical manifestations in a homozygous mutant sibling. (7/35)

In a Palestinian family, four siblings were shown to express typical and severe congenital erythropoietic porphyria (CEP). A new mutation of the uroporphyrinogen III synthase (UROS) gene was evidenced by systematic sequencing of the UROS gene: the substitution of serine by proline at the amino acid residue 47 (S47P) was present at the homozygous state in the four patients. The mother was heterozygous, the father was not examined. Surprisingly, in one unaffected sister, UROS activity was markedly deficient and UROS gene analysis showed a homozygous mutant profile. The deleterious role of the mutant S47P protein on UROS activity was demonstrated by prokaryotic expression. This observation is the first report of a healthy status associated with homozygosity for a mutation of UROS gene in a severely affected family. We then draw hypotheses to explain the protective phenotype in the homozygous healthy subject.  (+info)

A knock-in mouse model of congenital erythropoietic porphyria. (8/35)

Congenital erythropoietic porphyria (CEP) is a recessive autosomal disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. The severity of the disease, the lack of specific treatment except for allogeneic bone marrow transplantation, and the knowledge of the molecular lesions are strong arguments for gene therapy. An animal model of CEP has been designed to evaluate the feasibility of retroviral gene transfer in hematopoietic stem cells. We have previously demonstrated that the knockout of the Uros gene is lethal in mice (Uros(del) model). This work describes the achievement of a knock-in model, which reproduces a mutation of the UROS gene responsible for a severe UROS deficiency in humans (P248Q missense mutant). Homozygous mice display erythrodontia, moderate photosensitivity, hepatosplenomegaly, and hemolytic anemia. Uroporphyrin (99% type I isomer) accumulates in urine. Total porphyrins are increased in erythrocytes and feces, while Uros enzymatic activity is below 1% of the normal level in the different tissues analyzed. These pathological findings closely mimic the CEP disease in humans and demonstrate that the Uros(mut248) mouse represents a suitable model of the human disease for pathophysiological, pharmaceutical, and therapeutic purposes.  (+info)