Bacteriophage inactivation at the air-water-solid interface in dynamic batch systems. (1/492)

Bacteriophages have been widely used as surrogates for human enteric viruses in many studies on virus transport and fate. In this investigation, the fates of three bacteriophages, MS2, R17, and phiX174, were studied in a series of dynamic batch experiments. Both MS2 and R17 readily underwent inactivation in batch experiments where solutions of each phage were percolated through tubes packed with varying ratios of glass and Teflon beads. MS2 and R17 inactivation was the result of exposure to destructive forces at the dynamic air-water-solid interface. phiX174, however, did not undergo inactivation in similar studies, suggesting that this phage does not accumulate at air-water interfaces or is not affected by interfacial forces in the same manner. Other batch experiments showed that MS2 and R17 were increasingly inactivated during mixing in polypropylene tubes as the ionic strength of the solution was raised (phiX174 was not affected). By the addition of Tween 80 to suspensions of MS2 and R17, phage inactivation was prevented. Our data suggest that viral inactivation in simple dynamic batch experiments is dependent upon (i) the presence of a dynamic air-water-solid interface (where the solid is a hydrophobic surface), (ii) the ionic strength of the solution, (iii) the concentration of surface active compounds in the solution, and (iv) the type of virus used.  (+info)

Comparison of immunity generated by nucleic acid-, MF59-, and ISCOM-formulated human immunodeficiency virus type 1 vaccines in Rhesus macaques: evidence for viral clearance. (2/492)

The kinetics of T-helper immune responses generated in 16 mature outbred rhesus monkeys (Macaca mulatta) within a 10-month period by three different human immunodeficiency virus type 1 (HIV-1) vaccine strategies were compared. Immune responses to monomeric recombinant gp120SF2 (rgp120) when the protein was expressed in vivo by DNA immunization or when it was delivered as a subunit protein vaccine formulated either with the MF59 adjuvant or by incorporation into immune-stimulating complexes (ISCOMs) were compared. Virus-neutralizing antibodies (NA) against HIV-1SF2 reached similar titers in the two rgp120SF2 protein-immunized groups, but the responses showed different kinetics, while NA were delayed and their levels were low in the DNA-immunized animals. Antigen-specific gamma interferon (IFN-gamma) T-helper (type 1-like) responses were detected in the DNA-immunized group, but only after the fourth immunization, and the rgp120/MF59 group generated both IFN-gamma and interleukin-4 (IL-4) (type 2-like) responses that appeared after the third immunization. In contrast, rgp120/ISCOM-immunized animals rapidly developed marked IL-2, IFN-gamma (type 1-like), and IL-4 responses that peaked after the second immunization. To determine which type of immune responses correlated with protection from infection, all animals were challenged intravenously with 50 50% infective doses of a rhesus cell-propagated, in vivo-titrated stock of a chimeric simian immunodeficiency virus-HIVSF13 construct. Protection was observed in the two groups receiving the rgp120 subunit vaccines. Half of the animals in the ISCOM group were completely protected from infection. In other subunit vaccinees there was evidence by multiple assays that virus detected at 2 weeks postchallenge was effectively cleared. Early induction of potent type 1- as well as type 2-like T-helper responses induced the most-effective immunity.  (+info)

Purification and characterization from rat kidney membranes of a novel platelet-activating factor (PAF)-dependent transacetylase that catalyzes the hydrolysis of PAF, formation of PAF analogs, and C2-ceramide. (3/492)

We have previously identified two enzyme activities that transfer the acetyl group from platelet-activating factor (PAF) in a CoA-independent manner to lysoplasmalogen or sphingosine in HL-60 cells, endothelial cells, and a variety of rat tissues. These were termed as PAF:lysoplasmalogen (lysophospholipid) transacetylase and PAF:sphingosine transacetylase, respectively. In the present study, we have solubilized and purified this PAF-dependent transacetylase 13,700-fold from rat kidney membranes (mitochondrial plus microsomal membranes) based on the PAF:lysoplasmalogen transacetylase activity. The mitochondria and microsomes were prepared and washed three times, then solubilized with 0.04% Tween 20 at a detergent/protein (w/w) ratio of 0.1. The solubilized fractions from mitochondria and microsomes were combined and subjected to sequential column chromatographies on DEAE-Sepharose, hydroxyapatite, phenyl-Sepharose, and chromatofocusing. The enzyme was further purified by native-polyacrylamide gel electrophoresis (PAGE) and affinity gel matrix in which the competitive inhibitor of the enzyme, 1-O-hexadecyl-2-N-methylcarbamyl-sn-glycero-3-phosphoethanolamine was covalently attached to the CH-Sepharose. On SDS-PAGE, the purified enzyme showed a single homogeneous band with an apparent molecular mass of 40 kDa. The purified enzyme catalyzed transacetylation of the acetyl group not only from PAF to lysoplasmalogen forming plasmalogen analogs of PAF, but also to sphingosine producing N-acetylsphingosine (C2-ceramide). In addition, this enzyme acted as a PAF-acetylhydrolase in the absence of lipid acceptor molecules. These results suggest that PAF-dependent transacetylase is an enzyme that modifies the cellular functions of PAF through generation of other diverse lipid mediators.  (+info)

Enzymatic properties of vesicle-reconstituted human cytochrome P450SCC (CYP11A1) differences in functioning of the mitochondrial electron-transfer chain using human and bovine adrenodoxin and activation by cardiolipin. (4/492)

The recently reported heterologous expression and purification of both human cytochrome P450SCC and adrenodoxin [Woods, S.T., Sadleir, J., Downs, T., Triantopoulos, T., Haedlam, M.J. & Tuckey, R.C. (1998) Arch. Biochem. Biophys. 353, 109-115] has enabled us to perform studies with the membrane-reconstituted human enzymes to better understand the side-chain cleavage reaction in humans. Human P450SCC was successfully reconstituted into dioleoylphosphatidylcholine vesicles with and without cardiolipin and its enzymatic properties characterized in the membrane-bound state. Enhancement of the P450SCC activity and significant activation by cardiolipin were observed when human adrenodoxin instead of bovine adrenodoxin was used as electron donor. In the absence of cardiolipin, Km for cholesterol was decreased twice in the case of human adrenodoxin indicating enhanced cholesterol binding. On the other hand, in the presence of cardiolipin in the membrane both Km and V for cholesterol were decreased with human adrenodoxin as electron donor. Kinetic analysis of the interaction between human P450SCC and its redox partners provided evidence for enhanced binding of the human electron donor to human P450SCC indicated by both an increased V and decreased Kd for human adrenodoxin compared with the values with bovine adrenodoxin. Because no similar effects were observed in Tween 20 micelles, these results suggest that the phospholipid membrane may play an important role in the interaction of human adrenodoxin with human P450SCC.  (+info)

Virus passage through track-etch membranes modified by salinity and a nonionic surfactant. (5/492)

Why do viruses sometimes not pass through larger pores in track-etch filters? Increasing the salinity (0.8 to 160 mM Na+) decreased phiX174 and PRD1 passage through track-etch polycarbonate membranes (sodium dodecyl sulfate coated but not polyvinylpyrrolidone coated) and PRD1 passage through polyester membranes. Undiminished passage when 0.1% Tween 80 was added implied that nonionic virus adsorption occurred and indicated that high levels of salinity decreased virus passage by decreasing electrostatic repulsion that prevented adsorption.  (+info)

Rapid esterase-sensitive breakdown of polysorbate 80 and its impact on the plasma pharmacokinetics of docetaxel and metabolites in mice. (6/492)

We have developed and validated an analytical methodology for the quantification of docetaxel and its four major human oxidation metabolites in mouse plasma. We have used this procedure to study the pharmacokinetics and metabolism of docetaxel in female FVB mice, receiving 2.5, 10, or 33 mg/kg of docetaxel by i.v. injection. We have also studied the pharmacokinetics of polysorbate 80, because it was shown previously that the vehicle substance Cremophor EL, which is used in the formulation of paclitaxel, exerts a profound effect on the pharmacokinetics of this compound. Linear pharmacokinetics of docetaxel was observed at dose levels between 2.5 and 10 mg/kg, where plasma levels corresponded to those in patients receiving the maximum tolerated dose. At the highest dose level of 33 mg/kg, a deviation from the linear kinetics was observed. Compared with humans, mice could tolerate much higher plasma levels, suggesting that the toxic side effects are related to a certain plasma threshold concentration instead of area under the curve or Cmax. At the highest dose level, three docetaxel metabolites could be detected in the plasma samples of mice for up to 4 h after drug administration. The hydroxy metabolite of the tert-butoxy group (metabolite II) was the major metabolite, followed by the two epimeric hydroxyoxazolone-type compounds (metabolites I and III). A fourth putative metabolite (e.g., the cyclic oxazolidinedione derivative) was not detected. Because of rapid degradation of polysorbate 80 by esterases in plasma, the concentration of this vehicle substance declined very rapidly. Consequently, this substance was not able to interfere in the disposition of docetaxel.  (+info)

A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species. (7/492)

Two nontoxic, antimicrobial nanoemulsions, BCTP and BCTP 401, have been developed. These emulsions are composed of detergents and oils in 80% water. BCTP diluted up to 1:1000 inactivated>90% of Bacillus anthracis spores in 4 h and was also sporicidal against three other Bacillus species. This sporicidal activity is due to disruption of the spore coat after initiation of germination without complete outgrowth. BCTP 401 diluted 1:1000 had greater activity than BCTP against Bacillus spores and had an onset of action of <30 min. Mixing BCTP or BCTP 401 with Bacillus cereus prior to subcutaneous injection in mice reduced the resulting skin lesion by 99%. Wound irrigation with BCTP 1 h after spore inoculation yielded a 98% reduction in skin lesion size, and mortality was reduced 3-fold. These nanoemulsion formulas are stable, easily dispersed, nonirritant, and nontoxic compared with other available sporicidal agents.  (+info)

Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis. (8/492)

The characteristics of the accumulation of 2 mg/L [(14)C]rifampicin by wild-type strains of Mycobacterium aurum (A(+)), Mycobacterium smegmatis (mc(2)155) and Mycobacterium tuberculosis (H37Rv) were determined. After 10 min exposure M. aurum had accumulated 220 ng rifampicin/mg cells, M. smegmatis had accumulated 120 ng rifampicin/mg cells and M. tuberculosis had accumulated 154 ng rifampicin/mg cells. A steady-state concentration (SSC) of rifampicin was accumulated rapidly by M. aurum and M. tuberculosis within minutes of drug exposure, unlike M. smegmatis, which accumulated rifampicin more slowly. With an increase in the concentration of rifampicin from 0.12 mg/L to 2 mg/L there was an increase in the concentration of rifampicin accumulated by M. tuberculosis, with no detectable loss of viability over the 20 min of the accumulation experiment. With an increase in temperature there was also an increase in the concentration of rifampicin accumulated by M. tuberculosis; between 15 and 30 degrees C the increase was linear. For all three species sub-inhibitory concentrations of ethambutol increased the concentration of rifampicin accumulated. However, both growth and accumulation of rifampicin were lower in the presence of 0.05% Tween 80. Accumulation of rifampicin by M. smegmatis was unaffected by the presence of the proton motive force inhibitor, 2,4-dinitrophenol (1 mM), whether added before or after the addition of rifampicin to the mycobacterial culture. For all three species, the Gram-positive bacterial efflux inhibitor reserpine (20 mg/L) slightly increased the SSC of rifampicin, but the increase was not statistically significant. Addition of glucose to energize a putative efflux pump had little effect on the accumulation of rifampicin in the presence or absence of reserpine for M. tuberculosis; however, for M. aurum and M. smegmatis the reserpine effect was abolished by the addition of glucose. These data suggest that rifampicin may be removed from wild-type mycobacteria by efflux, but that the pump(s) is expressed at low level.  (+info)