Nitrogen dynamics in the intact grasses Poa trivialis and Panicum maximum receiving contrasting supplies of nitrogen. (1/32)

The C(3) grass Poa trivialis and the C(4) grass Panicum maximum were grown in sand culture and received a complete nutrient solution with nitrogen supplied as 1.5 mol m(-3) NH(4)NO(3). (15)N tracer techniques were used to quantify the relative use of root uptake and mobilization in supplying nitrogen to growing leaves in intact plants which either continued to receive nitrogen or which received the complete nutrient solution without nitrogen. The allocation of both (15)N-labelled nitrogen uptake and unlabelled mobilized nitrogen indicated that, under their conditions of growth, the sink strength of growing leaves was relatively greater in P. maximum than P. trivialis. The supply of nitrogen by mobilization to side tillers of P. trivialis was completely stopped as the external nitrogen supply was reduced, whilst in P. maximum some allocation of mobilized nitrogen to side tillers, roots and growing leaves was maintained. In both plant species receiving an uninterrupted supply of nitrogen the allocation pattern of mobilized nitrogen differed from that of nitrogen derived from root uptake. Differences exist in the degree to which P. trivialis and P. maximum utilized uptake and mobilization to supply nitrogen to the growing leaves. In P. trivialis roots were always a net sink of mobilized nitrogen, irrespective of the external nitrogen supply. In P. maximum, roots were a net sink of mobilized nitrogen when external nitrogen was withdrawn, but exhibited both source and sink behaviour when nitrogen supply was continued.  (+info)

Variation in onset of summer dormancy and flowering capacity along an aridity gradient in Poa bulbosa L., a geophytic perennial grass. (2/32)

Variation in the onset of summer dormancy and flowering capacity of 16 populations of Poa bulbosa, collected along a steep north-south aridity gradient in Israel (810-110 mm rain year(-1)), was studied under controlled conditions in a phytotron (16 h daylength, 22/16 degrees C day/night) and under natural conditions in a garden experiment in a net-house. Plant age at the onset of dormancy varied markedly amongst populations (7-16 weeks under controlled conditions) and was positively correlated with mean annual precipitation at the site of origin of the population, i.e. dormancy was earlier as aridity increased. Flowering capacity in the different populations was negatively correlated with rainfall in the original habitat and, consequently, also with the age at onset of dormancy, i.e. the lower the mean annual precipitation, the earlier the onset of dormancy and the higher the proportion of flowering plants and panicles per plant. Differences in xeromorphic leaf traits were also observed among populations from locations differing in aridity. Plants from the more arid sites (110-310 mm year(-1)) generally had greyish and curved leaves, whereas plants from more humid sites (500-810 mm year(-1)) tended to have green and straight leaves. Thus, plants with curved and/or greyish leaves generally had a higher flowering capacity and entered dormancy earlier than plants with straight and/or green leaves. The significance of the association among these traits for the adaptation of P. bulbosa to increasing aridity is discussed.  (+info)

Pseudoviviparous reproduction of Poa alpina var. vivipara L. (Poaceae) during long-term exposure to elevated atmospheric CO2. (3/32)

Pseudovivipary is an asexual reproductive strategy exhibited by some arctic/alpine grasses in which leafy plantlets are produced in place of seeds, with genetic conservation an advantage for stress tolerators in these nutrient-poor habitats. Photosynthetic metabolism and the development of this reproductive system were investigated under varying nutrient availability and predicted future CO(2) partial pressure (pCO(2)). Poa alpina var. vivipara L., grown at present ambient pCO(2) or ambient plus 340 micro mol mol(-1) CO(2) (elevated pCO(2)), was supplied with either 0.05 mol m(-3) phosphorus and 0.2 mol m(-3) nitrogen, or 0.2 mol m(-3) phosphorus and 1.0 mol m(-3) nitrogen. Gas exchange measurements and determination of total non-structural carbohydrate (TNC), nitrogen and phosphorus contents revealed that parent plant leaf blade tissues experienced acclimatory loss of photosynthetic capacity after long-term growth at elevated pCO(2) (particularly so when nutrient availability was low); there were associated reductions in photosynthetic nitrogen and phosphorus use efficiencies (PNUE and PPUE). In addition, decreased PNUE and PPUE were exhibited by plantlets grown at elevated pCO(2) with low nutrient availability. Decreased reproductive dry matter in this treatment also resulted from a lack of reproductive initiation in daughter tillers, and altered phenology. Pseudoviviparous P. alpina is likely to be at a disadvantage in both vegetative and reproductive phases at predicted future elevated atmospheric CO(2) concentrations, particularly where nutrients are scarce and when in competition with species experiencing less acclimatory loss of photosynthetic capacity.  (+info)

Short-term exposure to elevated atmospheric CO2 benefits the growth of a facultative annual root hemiparasite, Rhinanthus minor (L.), more than that of its host, Poa pratensis (L.). (4/32)

The effects of elevated CO2 (650 ppm) on interactions between a chlorophyllous parasitic angiosperm, Rhinanthus minor (L.) and a host, Poa pratensis (L.) were investigated. R. minor benefited from elevated CO2, with both photosynthesis and biomass increasing, and transpiration and tissue N concentration remaining unaffected. However, this did not alleviate the negative effect of the parasite on the host; R. minor reduced host photosynthesis, transpiration, leaf area and biomass, irrespective of CO2 concentration. Elevated CO2 resulted in increased host photosynthesis, but there was no concomitant increase in biomass and foliar N decreased. It appears that the parasite may reduce host growth more by competition for nitrogen than for carbon. Contrary to expectation, R. minor did not reduce the productivity of the host-parasite association, and it actually contributed to the stimulation of productivity of the association by elevated CO2.  (+info)

Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates. (5/32)

BACKGROUND: Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. METHODS: Pollen diffusates from Kentucky blue grass (Poa pratensis), rye grass (Lolium perenne) and Bermuda grass (Cynodon dactylon) were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. RESULTS: All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high Mr proteolytic activity at approximately 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at Mr approximately 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense) group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. CONCLUSION: One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1.  (+info)

The Inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance. (6/32)

The genetic control of apomixis was studied in numerous segregating progenies originated from intercrossing and selfing of obligate sexual and facultative apomictic parents in Poa pratensis by means of the flow cytometric seed screen. The data support a novel model with five major genes required to control asexual seed formation: the Apospory initiator (Ait) gene, the Apospory preventer (Apv) gene, a Megaspore development (Mdv) gene, the Parthenogenesis initiator (Pit) gene, and the Parthenogenesis preventer (Ppv) gene. Differences in expressivity and interactions of these genes are responsible for the wide variation of the mode of reproduction. Apospory and parthenogenesis as well as the initiator and preventer genes of these components segregate independently. The genotypes with the highest expressivity of apospory and parthenogenesis were assigned as Ait-/apvapv/Pit-/ppvppv, those with intermediate expressivity as Ait-/Apv-/Pit-/Ppv-, and those with low expressivity as aitait/apvapv/pitpit/ppvppv. Among the self progenies of obligate sexual individuals, plants with a low capacity for apospory and/or parthenogenesis occurred, indicating that the sexual parents were heterozygous for the preventer genes and homozygous for the recessive initiator alleles (aitait/Apv-/pitpit/Ppv-). The dominant allele Ait exhibits incomplete penetrance. The degree of expressivity of apospory and parthenogenesis was constant among several harvest years of F1 plants.  (+info)

Localization of Poa semilatent virus cysteine-rich protein in peroxisomes is dispensable for its ability to suppress RNA silencing. (7/32)

Subcellular localization of the Poa semilatent virus cysteine-rich gammab protein was studied by using different approaches. In infected tissue, gammab was detected mainly in the P30 fraction as monomers, dimers and oligomers. Green fluorescent protein-fused gammab was found to localize in punctate bodies in the cytoplasm. Colocalization with marker proteins demonstrated that these bodies represent peroxisomes. Immunoelectron microscopy revealed that gammab was localized in the peroxisomal matrix and that localization of gammab in peroxisomes required the C-terminal signal tripeptide SKL. An SKL-deletion mutant exhibited a diffuse localization, but retained the protein's ability to suppress RNA silencing, determine infection phenotype and support virus systemic spread. These data indicate that gammab functions are not associated with the protein's localization to peroxisomes.  (+info)

Comparison of early development of three grasses: Lolium perenne, Agrostis stolonifera and Poa pratensis. (8/32)

BACKGROUND AND AIMS: To improve the management of grass communities, early plant development was compared in three species with contrasting growth forms, a caespitose (Lolium perenne), a rhizomatous (Poa pratensis) and a caespitose-stoloniferous species (Agrostis stolonifera). METHODS: Isolated seedlings were grown in a glasshouse without trophic constraints for 37 d (761 degrees Cd). The appearance of leaves and their location on tillers were recorded. Leaf appearance rate (LAR) on the tillers and site-filling were calculated. Tillering was modelled based on the assumption that tiller number increases with the number of leaves produced on the seedling main stem. Above- and below-ground parts were harvested to compare biomass. KEY RESULTS: Lolium perenne and A. stolonifera expressed similar bunch-type developments. However, root biomass was approx. 30 % lower in A. stolonifera than in L. perenne. Poa pratensis was rhizomatous. Nevertheless, the ratio of above-ground : below-ground biomass of P. pratensis was similar to that of L. perenne. LAR was approximately equal to 0.30 leaf d(-1) in L. perenne, and on the main stem and first primary tillers of A. stolonifera. LAR on the other tillers of A. stolonifera was 30 % higher than on L. perenne. For P. pratensis, LAR was 30 % lower than on L. perenne, but the interval between the appearance of two successive shoots from rhizomes was 30 % higher than the interval between two successive leaf stages on the main stem. Above-ground parts of P. pratensis first grew slower than in the other species to the benefit of the rhizomes, whose development enhanced tiller production. CONCLUSIONS: Lolium perenne had the fastest tiller production at the earliest stages of seedling development. Agrostis stolonifera and P. pratensis compensated almost completely for the delay due to higher LAR on tillers or ramets compared with L. perenne. This study provides a basis for modelling plant development.  (+info)