The one-kilobase DNA fragment upstream of the ardC actin gene of Physarum polycephalum is both a replicator and a promoter. (1/137)

The 1-kb DNA fragment upstream of the ardC actin gene of Physarum polycephalum promotes the transcription of a reporter gene either in a transient-plasmid assay or as an integrated copy in an ectopic position, defining this region as the transcriptional promoter of the ardC gene (PardC). Since we mapped an origin of replication activated at the onset of S phase within this same fragment, we examined the pattern of replication of a cassette containing the PardC promoter and the hygromycin phosphotransferase gene, hph, integrated into two different chromosomal sites. In both cases, we show by two-dimensional agarose gel electrophoresis that an efficient, early activated origin coincides with the ectopic PardC fragment. One of the integration sites was a normally late-replicating region. The presence of the ectopic origin converted this late-replicating domain into an early-replicating domain in which replication forks propagate with kinetics indistinguishable from those of the native PardC replicon. This is the first demonstration that initiation sites for DNA replication in Physarum correspond to cis-acting replicator sequences. This work also confirms the close proximity of a replication origin and a promoter, with both functions being located within the 1-kb proximal region of the ardC actin gene. A more precise location of the replication origin with respect to the transcriptional promoter must await the development of a functional autonomously replicating sequence assay in Physarum.  (+info)

Early activated replication origins within the cell cycle-regulated histone H4 genes in Physarum. (2/137)

It was previously shown that the two members of the cell cycle-regulated histone H4 gene family, H4-1 and H4-2, are replicated at the onset of S phase in the naturally synchronous plasmodium of Physarum polycephalum, suggesting that they are flanked by replication origins. It was further shown that a DNA fragment upstream of the H4-1 gene is able to confer autonomous replication of a plasmid in the budding yeast. In this paper, we re-investigated replication of the unlinked Physarum histone H4 genes by mapping the replication origin of these two loci using alkaline agarose gel and neutral/neutral 2-dimensional agarose gel electrophoreses. We showed that the two replicons containing the H4 genes are simultaneously activated at the onset of S phase and we mapped an efficient, bidirectional replication origin in the vicinity of each gene. Our data demonstrated that the Physarum sequence that functions as an ARS in yeast is not the site of replication initiation at the H4-1 locus. We also observed a stalling of the rightward moving replication fork downstream of the H4-1 gene, in a region where transient topoisomerase II sites were previously mapped. Our results further extend the concept of replication/transcription coupling in Physarum to cell cycle-regulated genes.  (+info)

Tropomyosin is localized in the nuclear matrix and chromosome scaffold of Physarum polycephalum. (3/137)

The nuclei and chromosomes were isolated from plasmodia of Physarum polycephalum. The nuclear matrix and chromosome scaffold were obtained after the DNA and most of the proteins were extracted with DNase I and 2 M NaCl. SDS-PAGE analyses revealed that the nuclear matrix and chromosome scaffold contained a 37 kD polypeptide which is equivalent to tropomyosin in molecular weight. Immunofluorescence observations upon slide preparations labeled with anti-tropomyosin antibody showed that the nuclear matrix and chromosome scaffold emanated bright fluorescence, suggesting the presence of the antigen in them. Immunodotting results confirmed the presence of tropomyosin in the nuclear matrix and chromosome scaffold. Immunoelectron microscopic observations further demonstrated that tropomyosin was dispersively distributed in the interphase nuclei and metaphase chromosomes.  (+info)

The crystal structure of the Physarum polycephalum actin-fragmin kinase: an atypical protein kinase with a specialized substrate-binding domain. (4/137)

Coordinated temporal and spatial regulation of the actin cytoskeleton is essential for diverse cellular processes such as cell division, cell motility and the formation and maintenance of specialized structures in differentiated cells. In plasmodia of Physarum polycephalum, the F-actin capping activity of the actin-fragmin complex is regulated by the phosphorylation of actin. This is mediated by a novel type of protein kinase with no sequence homology to eukaryotic-type protein kinases. Here we present the crystal structure of the catalytic domain of the first cloned actin kinase in complex with AMP at 2.9 A resolution. The three-dimensional fold reveals a catalytic module of approximately 160 residues, in common with the eukaryotic protein kinase superfamily, which harbours the nucleotide binding site and the catalytic apparatus in an inter-lobe cleft. Several kinases that share this catalytic module differ in the overall architecture of their substrate recognition domain. The actin-fragmin kinase has acquired a unique flat substrate recognition domain which is supposed to confer stringent substrate specificity.  (+info)

Crystallization and preliminary X-ray diffraction studies of a 40 kDa calcium binding protein specifically expressed in plasmodia of Physarum polycephalum. (5/137)

A calcium binding protein with a molecular mass of 40 kDa (CBP40), the gene product of plasmodial-specific LAV1-2 of Physarum polycephalum, was crystallized in the presence of EDTA. The crystals diffracted X-rays up to a resolution of 3.0 A. They belonged to the trigonal space group, P3221 (or P3121), with unit cell dimensions of a = b = 64.4 A and c = 207.2 A. Ca2+-bound crystals were obtained by soaking in a CaCl2 solution, which gave diffraction data of similar quality. The Ca2+-soaked crystals belonged to the same space group as those crystallized in the presence of EDTA with unit cell dimensions of a = b = 64.4 A and c = 209.4 A.  (+info)

Expression of ras-family genes in the cell cycle and during differentiation of the lower eukaryote Physarum polycephalum. (6/137)

Messenger RNA levels of three ras-family genes (Ppras1, Ppras2, and Pprap1) were measured in different life forms and throughout the cell cycle of the slime mold Physarum polycephalum. All three genes are expressed at constant rates in the uninucleate amoebae and flagellates, regardless of the culture conditions (solid or liquid medium, particulate or dissolved nutrients). In the multinucleate stages (micro- and macroplasmodia) Ppras1 and Pprap1 mRNAs are somewhat less abundant, while Ppras2 is not expressed at all. The early stages of the amoeba-plasmodium transition proceed without any drop in Ppras2 expression. During the synchronous cell cycle in macroplasmodia Ppras1 and Pprap1 are expressed at a constant level.  (+info)

Physarum amoebae express a distinct fragmin-like actin-binding protein that controls in vitro phosphorylation of actin by the actin-fragmin kinase. (7/137)

Amoebae and plasmodia constitute the two vegetative growth phases of the Myxomycete Physarum. In vitro and in vivo phosphorylation of actin in plasmodia is tightly controlled by fragmin P, a plasmodium-specific actin-binding protein that enables actin phosphorylation by the actin-fragmin kinase. We investigated whether amoebal actin is phosphorylated by this kinase, in spite of the lack of fragmin P. Strong actin phosphorylation was detected only following addition of recombinant actin-fragmin kinase to cell-free extracts of amoebae, suggesting that amoebae contain a protein with properties similar to plasmodial fragmin. We purified the complex between actin and this protein to homogeneity. Using an antibody that specifically recognizes phosphorylated actin, we demonstrate that Thr203 in actin can be phosphorylated in this complex. A full-length amoebal fragmin cDNA was cloned and the deduced amino acid sequence shows 65% identity with plasmodial fragmin. However, the fragmins are encoded by different genes. Northern blots using RNA from a developing Physarum strain demonstrate that this fragmin isoform (fragmin A) is not expressed in plasmodia. In situ localization showed that fragmin A is present mainly underneath the plasma membrane. Our results indicate that Physarum amoebae express a fragmin P-like isoform which shares the property of binding actin and converting the latter into a substrate for the actin-fragmin kinase.  (+info)

Is beta-poly(L-malate) synthesis catalysed by a combination of beta-L-malyl-AMP-ligase and beta-poly(L-malate) polymerase? (8/137)

beta-Poly(L-malate) is supposed to function in the storage and transport of histones, DNA polymerases and other nuclear proteins in the giant syncytical cells (plasmodia) of myxomycetes. Here we report on the biosynthesis of [14C]beta-poly(L-malate) from injected L-[14C]malate in the plasmodium of Physarum polycephalum. The effects of KCN, arsenate, adenosine 5'-(alpha, beta-methylene)triphosphate, adenosine 5'-(beta, gamma-methylene)triphosphate, guanosine 5'-(beta, gamma-methylene)triphosphate, desulfo coenzyme A and phenylarsinoxid on beta-poly(L-malate) synthesis were studied after their coinjection with L-[14C]malate. The synthesis was not affected by KCN or desulfo coenzyme A, but was blocked by arsenate and adenosine 5'-(alpha,beta-methylene)triphosphate. The plasmodium lysate catalysed an L-malate-dependent ATP-[32P]pyrophosphate exchange, but was devoid of beta-poly(L-malate) synthetic activity under all experimental conditions tested. The results suggested an extramitochondrial synthesis of beta-poly(L-malate), involving the polymerization of beta-L-malyl-AMP. It is assumed that the lack of synthesis in the lysate is caused by the inactivation of beta-poly(L-malate) polymerase involving a cell injury kinase pathway. Because injected guanosine 5'-(beta, gamma-methylene)triphosphate blocks the synthesis, the injury signal is likely to be GTP dependent.  (+info)