Correlates of sleep and waking in Drosophila melanogaster. (65/41147)

Drosophila exhibits a circadian rest-activity cycle, but it is not known whether fly rest constitutes sleep or is mere inactivity. It is shown here that, like mammalian sleep, rest in Drosophila is characterized by an increased arousal threshold and is homeostatically regulated independently of the circadian clock. As in mammals, rest is abundant in young flies, is reduced in older flies, and is modulated by stimulants and hypnotics. Several molecular markers modulated by sleep and waking in mammals are modulated by rest and activity in Drosophila, including cytochrome oxidase C, the endoplasmic reticulum chaperone protein BiP, and enzymes implicated in the catabolism of monoamines. Flies lacking one such enzyme, arylalkylamine N-acetyltransferase, show increased rest after rest deprivation. These results implicate the catabolism of monoamines in the regulation of sleep and waking in the fly and suggest that Drosophila may serve as a model system for the genetic dissection of sleep.  (+info)

Identification of differentially expressed genes from limited amounts of RNA. (66/41147)

The identification of cellular RNA expression profiles by differential display (DD) involves the visualization of RT-PCR products from the RNA. Traditionally, DD protocols require 200-500 ng RNA for each RT reaction. Thus, the limiting factor in DD is the amount of RNA available and the sensitivity of the RT reaction. By replacing the type of reverse transcriptase in our method, the sensitivity of DD increased up to 100-fold. Very significantly, the cDNA species obtained are higher in molecular weight, increasing the chances of detection of differential display genes with less background bands. The false positives and background in general also decreased due to the utilization of Taq polymerase antibody to facilitated DNA synthesis in the PCR reaction step. The reverse transcriptases described here may have a greater priming capacity as well as strong processivity which would explain the higher sensitivity accomplished in comparison to more standard reverse transcriptases. Additionally, the application of a more sensitive DD to samples when the amount of RNA is limited would be highly recommended.  (+info)

Identification of novel imprinted transcripts in the Prader-Willi syndrome and Angelman syndrome deletion region: further evidence for regional imprinting control. (67/41147)

Deletions and other abnormalities of human chromosome 15q11-q13 are associated with two developmental disorders, Prader-Willi syndrome (PWS) and Angelman syndrome (AS). Loss of expression of imprinted, paternally expressed genes has been implicated in PWS. However, the number of imprinted genes that contribute to PWS, and the range over which the imprinting signal acts to silence one copy of the gene in a parent-of-origin-specific manner, are unknown. To identify additional imprinted genes that could contribute to the PWS phenotype and to understand the regional control of imprinting in 15q11-q13, we have constructed an imprinted transcript map of the PWS-AS deletion interval. The imprinting status of 22 expressed sequence tags derived from the radiation-hybrid human transcript maps or physical maps was determined in a reverse transcriptase-PCR assay and correlated with the position of the transcripts on the physical map. Seven new paternally expressed transcripts localize to an approximately 1.5-Mb domain surrounding the SNRPN-associated imprinting center, which already includes four imprinted, paternally expressed genes. All other tested new transcripts in the deletion region were expressed from both alleles. A domain of exclusive paternal expression surrounding the imprinting center suggests strong regional control of the imprinting process. This study provides the means for further investigation of additional genes that cause or modify the phenotypes associated with rearrangements of 15q11-q13.  (+info)

The proteome of Mycoplasma genitalium. Chaps-soluble component. (68/41147)

Mycoplasma genitalium is the smallest member of the class Mollicutes, with a genome size of 580 kb. It has the potential to express 480 gene products, and is therefore considered to be an excellent model to assess: (a) the minimum metabolism required by a free living cell; and (b) proteomic technologies and the information obtained by proteome analysis. Here, we report on the most complete proteome observed at 73% (expected proteome), and analysed at 33% (reported proteome). The use of four overlapping pH windows in conjunction with SDS/PAGE has allowed 427 distinct proteins to be resolved in association with the exponential growth of M. genitalium. Proof of expression for 201 proteins of sufficient abundance on silver stained two-dimensional gels was obtained using peptide mass fingerprinting (PMF) of which 158 were identified. The potential for gene product modification in even the simplest known self-replicating organism was quantified at a ratio of 1.22 : 1, more proteins than genes. A reduction in protein expression of 42% was observed for post-exponentially-grown cells. DnaK, GroEL, DNA gyrase, and a cytadherence accessory protein were significantly elevated, while some ribosomal proteins were reduced in relative abundance. The strengths and weaknesses of techniques employed were assessed with respect to the observed and predicted proteome derived from DNA sequence information. Proteomics was shown to provide a perspective into the biochemical and metabolic activities of this organism, beyond that obtainable by sequencing alone.  (+info)

Iron overload and gene expression in HepG2 cells: analysis by differential display. (69/41147)

The aim of the present study was to evaluate the effect of iron overload on gene expression in HepG2 cells by differential display. Iron-treated cells showed a 50% decrease in apolipoprotein B100 (Apo B100) and a 2- and 3-fold increase in semaphorin cd100 and aldose reductase mRNA, respectively, with parallel variations in Apo B100 and aldose reductase proteins. These effects were time-dependent. Vitamin E prevented the increase in aldose reductase expression, but had no effect on Apo B100 and semaphorin cd100. Treatment with hydrogen peroxide and 4-hydroxy-2,3-nonenal increased only aldose reductase mRNA. These data suggest that iron can affect mRNA levels by lipid peroxidation-dependent and -independent pathways.  (+info)

Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro. (70/41147)

We have carried out a human cDNA sequencing project to accumulate information regarding the coding sequences of unidentified human genes. As an extension of the preceding reports, we herein present the entire sequences of 150 cDNA clones of unknown human genes, named KIAA1294 to KIAA1443, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here reached 4.8 kb and 2.7 kb (910 amino acid residues), respectively. From sequence similarities and protein motifs, 73 predicted gene products were functionally annotated and 97% of them were classified into the following four functional categories: cell signaling/communication, nucleic acid management, cell structure/motility and protein management. Additionally, the chromosomal loci of the genes were assigned by using human-rodent hybrid panels for those genes whose mapping data were not available in the public databases. The expression profiles of the genes were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.  (+info)

The human adult skeletal muscle transcriptional profile reconstructed by a novel computational approach. (71/41147)

By applying a novel software tool, information on 4080 UniGene clusters was retrieved from three adult human skeletal muscle cDNA libraries, which were selected for being neither normalized nor subtracted. Reconstruction of a transcriptional profile of the corresponding tissue was attempted by a computational approach, classifying each transcript according to its level of expression. About 25% of the transcripts accounted for about 80% of the detected transcriptional activity, whereas most genes showed a low level of expression. This in silico transcriptional profile was then compared with data obtained by a SAGE study. A fairly good agreement between the two methods was observed. About 400 genes, highly expressed in skeletal muscle or putatively skeletal muscle-specific, may represent the minimal set of genes needed to determine the tissue specificity. These genes could be used as a convenient reference to monitor major changes in the transcriptional profile of adult human skeletal muscle in response to different physiological or pathological conditions, thus providing a framework for designing DNA microarrays and initiating biological studies.  (+info)

The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. (72/41147)

We have analyzed the transcriptional response to osmotic shock in the yeast Saccharomyces cerevisiae. The mRNA level of 186 genes increased at least 3-fold after a shift to NaCl or sorbitol, whereas that of more than 100 genes was at least 1.5-fold diminished. Many induced genes encode proteins that presumably contribute to protection against different types of damage or encode enzymes in glycerol, trehalose, and glycogen metabolism. Several genes, which encode poorly expressed isoforms of enzymes in carbohydrate metabolism, were induced. The high osmolarity glycerol (HOG) pathway is required for full induction of many but not all genes. The recently characterized Hot1p transcription factor is required for normal expression of a subset of the HOG pathway-dependent responses. Stimulated expression of the genes that required the general stress-response transcription factors Msn2p and Msn4p was also reduced in a hog1 mutant, suggesting that Msn2p/Msn4p might be regulated by the HOG pathway. The expression of genes that are known to be controlled by the mating pheromone response pathway was stimulated by osmotic shock specifically in a hog1 mutant. Inappropriate activation of the mating response may contribute to the growth defect of a hog1 mutant in high osmolarity medium.  (+info)