Steady-state nitrogen isotope effects of N2 and N2O production in Paracoccus denitrificans. (1/439)

Nitrogen stable-isotope compositions (delta15N) can help track denitrification and N2O production in the environment, as can knowledge of the isotopic discrimination, or isotope effect, inherent to denitrification. However, the isotope effects associated with denitrification as a function of dissolved-oxygen concentration and their influence on the isotopic composition of N2O are not known. We developed a simple steady-state reactor to allow the measurement of denitrification isotope effects in Paracoccus denitrificans. With [dO2] between 0 and 1.2 microM, the N stable-isotope effects of NO3- and N2O reduction were constant at 28.6 per thousand +/- 1.9 per thousand and 12.9 per thousand +/- 2.6 per thousand, respectively (mean +/- standard error, n = 5). This estimate of the isotope effect of N2O reduction is the first in an axenic denitrifying culture and places the delta15N of denitrification-produced N2O midway between those of the nitrogenous oxide substrates and the product N2 in steady-state systems. Application of both isotope effects to N2O cycling studies is discussed.  (+info)

Evaluation of relative contributions of two enzymes supposed to metabolise hydrogen peroxide in Paracoccus denitrificans. (2/439)

A biosensor exploiting an electrochemically mediated enzyme-catalysed reaction was used to quantify relative contributions of cytoplasmic catalase and periplasmic cytochrome c peroxidase to the overall rate of hydrogen peroxide breakdown in cells of Paracoccus denitrificans. The effects of antimycin (an inhibitor of electron flow to cytochrome c peroxidase), the reaction rate versus substrate concentration profiles for the whole cells and subcellular fractions, and the time courses of oxygen concentration demonstrated a profound decrease in the capacity of cytochrome c peroxidase to reduce H2O2 under in vivo conditions. The reason is suggested to be a competition for available electrons between the enzyme and terminal oxidases metabolising oxygen produced by catalase.  (+info)

Cytochrome c' from Paracoccus denitrificans: spectroscopic studies consistent with a role for the protein in nitric oxide metabolism. (3/439)

Cytochrome c' was purified from the denitrifying bacterium Paracoccus denitrificans and the interaction of the protein with nitric oxide was examined spectroscopically. Two distinct types of haem-nitrosyl electronic absorption spectrum were observed, which were dependent upon [NO]. When cytochrome c' was saturated with NO, alpha and beta bands were centred at 562 nm and 530 nm, whereas with sub-saturating concentrations of NO the alpha and beta bands were red-shifted to 578 nm and 542 nm respectively. Further spectroscopic analysis showed that purified cytochrome c', added to suspensions of P. denitrificans, is able to complex with the NO which is formed as a freely diffusible intermediate of denitrification. In the presence of added NO-3 or NO-2, 40-60% of Fe(II)-cytochrome c' forms a 6-coordinate haem-nitrosyl complex. In the absence of nitrogen oxyanions or NO whole denitrifying cells are able to remove the NO from a Fe(II)-cytochrome c'-NO complex. These findings support the hypothesis that the physiological function of this enigmatic cytochrome involves the reversible binding of nitric oxide.  (+info)

NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron-sulfur cluster N2 to quinone. (4/439)

The proton-translocating NADH-quinone oxidoreductase (EC 1.6.99.3) is the largest and least understood enzyme complex of the respiratory chain. The mammalian mitochondrial enzyme (also called complex I) contains more than 40 subunits, whereas its structurally simpler bacterial counterpart (NDH-1) in Paracoccus denitrificans and Thermus thermophilus HB-8 consists of 14 subunits. A major unsolved question is the location and mechanism of the terminal electron transfer step from iron-sulfur cluster N2 to quinone. Potent inhibitors acting at this key region are candidate photoaffinity probes to dissect NADH-quinone oxidoreductases. Complex I and NDH-1 are very sensitive to inhibition by a variety of structurally diverse toxicants, including rotenone, piericidin A, bullatacin, and pyridaben. We designed (trifluoromethyl)diazirinyl[3H]pyridaben ([3H]TDP) as our photoaffinity ligand because it combines outstanding inhibitor potency, a suitable photoreactive group, and tritium at high specific activity. Photoaffinity labeling of mitochondrial electron transport particles was specific and saturable. Isolation, protein sequencing, and immunoprecipitation identified the high-affinity specifically labeled 23-kDa subunit as PSST of complex I. Immunoprecipitation of labeled membranes of P. denitrificans and T. thermophilus established photoaffinity labeling of the equivalent bacterial NQO6. Competitive binding and enzyme inhibition studies showed that photoaffinity labeling of the specific high-affinity binding site of PSST is exceptionally sensitive to each of the high-potency inhibitors mentioned above. These findings establish that the homologous PSST of mitochondria and NQO6 of bacteria have a conserved inhibitor-binding site and that this subunit plays a key role in electron transfer by functionally coupling iron-sulfur cluster N2 to quinone.  (+info)

The reduction state of the Q-pool regulates the electron flux through the branched respiratory network of Paracoccus denitrificans. (5/439)

In this work we demonstrate how the reduction state of the Q-pool determines the distribution of electron flow over the two quinol-oxidising branches in Paracoccus denitrificans: one to quinol oxidase, the other via the cytochrome bc1 complex to the cytochrome c oxidases. The dependence of the electron-flow rate to oxygen on the fraction of quinol in the Q-pool was determined in membrane fractions and in intact cells of the wild-type strain, a bc1-negative mutant and a quinol oxidase-negative mutant. Membrane fractions of the bc1-negative mutant consumed oxygen at significant rates only at much higher extents of Q reduction than did the wild-type strain or the quinol oxidase-negative mutant. In the membrane fractions, dependence on the Q redox state was exceptionally strong corresponding to elasticity coefficients close to 2 or higher. In intact cells, the dependence was weaker. In uncoupled cells the dependence of the oxygen-consumption rates on the fractions of quinol in the Q-pool in the wild-type strain and in the two mutants came closer to that found for the membrane fractions. We also determined the dependence for membrane fractions of the wild-type in the absence and presence of antimycin A, an inhibitor of the bc1 complex. The dependence in the presence of antimycin A resembled that of the bc1-negative mutant. These results indicate that electron-flow distribution between the two quinol-oxidising branches in P. denitrificans is not only determined by regulated gene expression but also, and to a larger extent, by the reduction state of the Q-pool.  (+info)

Heterologous expression of soluble fragments of cytochrome c552 acting as electron donor to the Paracoccus denitrificans cytochrome c oxidase. (6/439)

A membrane-bound c-type cytochrome, c552, acts as the electron mediator between the cytochrome bc1 complex and cytochrome c oxidase in the branched respiratory chain of the bacterium Paracoccus denitrificans. Unlike in mitochondria where a soluble cytochrome c interacts with both complexes, the bacterial c552, the product of the cycM gene, shows a tripartite structure, with an N-terminal membrane anchor separated from a typical class I cytochrome domain by a highly charged region. Two derivative fragments, lacking either only the membrane spanning region or both N-terminal domains, were constructed on the genetic level, and expressed in Escherichia coli cotransformed with the ccm gene cluster encoding host-specific cytochrome c maturation factors. High levels of cytochromes c were expressed and located in the periplasm as holo-proteins; both these purified c552 fragments are functional in electron transport to oxidase, as ascertained by kinetic measurements, and will prove useful for future structural studies of complex formation by NMR and X-ray diffraction.  (+info)

Pseudoazurin mediates periplasmic electron flow in a mutant strain of Paracoccus denitrificans lacking cytochrome c550. (7/439)

A periplasmic protein able to transfer electrons from cytoplasmic membrane to the periplasmic nitrite reductase (cytochrome cd1) has been purified from the anoxically grown cytochrome c550 mutant strain Pd2121 and shown to be pseudoazurin by several independent criteria (molecular mass, copper content, visible spectrum, N-terminal amino acid sequence). Under our assay conditions, the half-saturation of electron transport occurred at about 10 microM pseudoazurin; the reaction was retarded by increasing ionic strength.  (+info)

Determination of the Paracoccus denitrificans SOS box. (8/439)

By gel retardation experiments with crude cell extracts of Paracoccus denitrificans it was demonstrated that a protein specifically binds to the promoter of the P. denitrificans recA gene. PCR mutagenesis of the recA promoter showed that the GAACN7GAAC motif is required for the formation of the DNA-protein complex. This protein also binds to the GTTCN7GTTC motif, which is present in the promoter of the P. denitrificans uvrA gene. Mutational analysis of the promoter regions of both P. denitrificans recA and uvrA genes indicated that the GAACN7GAAC and GTTCN7GTTC sequences are required for DNA-damage-mediated induction of these two genes in vivo. Furthermore, the P. denitrificans recA gene was DNA-damage-inducible when introduced into cells of the phylogenetically related phototrophic bacterium Rhodobacter sphaeroides, although this inducibility was lost in mutants in the GAACN7GAAC motif. These results indicate that P. denitrificans possesses the same SOS box as R. sphaeroides, which, in agreement with previous work, is proposed as being the GTTCN7GTTC motif.  (+info)