Possible role of serotonin in Merkel-like basal cells of the taste buds of the frog, Rana nigromaculata. (1/665)

Merkel-like basal cells in the taste buds of the frog were examined by fluorescence histochemistry, immunohistochemistry and electron microscopy. There were about 16-20 basal cells arranged in a radial fashion at the base of each taste bud. These cells were strongly immunopositive for serotonin antiserum. They were characterised by the presence of numerous dense-cored granules in the cytoplasm ranging from 80 to 120 nm in diameter, and of microvilli protruding from the cell surface. For 4 mo after sensory denervation by cutting the gustatory nerves, all cell types of the taste bud were well preserved and maintained their fine structure. Even at 4 mo after denervation, the basal cells exhibited a strong immunoreaction with serotonin antiserum. To investigate the function of serotonin in the basal cells in taste bud function, serotonin deficiency was induced by administration of p-chlorophenylalanine (PCPA), an inhibitor of tryptophan hydroxylase, and of p-chloroamphetamine (PCA), a depletor of serotonin. After administration of these agents to normal and denervated frogs for 2 wk, a marked decrease, or complete absence, of immunoreactivity for serotonin was observed in the basal cells. Ultrastructurally, degenerative changes were observed in both types of frog; numerous lysosome-like myelin bodies were found in all cell types of the taste buds. The number of dense-cored granules in the basal cells also was greatly decreased by treatment with these drugs. Serotonin in Merkel-like basal cells appears to have a trophic role in maintenance of the morphological integrity of frog taste bud cells.  (+info)

Expression of Mash1 in basal cells of rat circumvallate taste buds is dependent upon gustatory innervation. (2/665)

Mash1, a mammalian homologue of the Drosophila achaete-scute proneural gene complex, plays an essential role in differentiation of subsets of peripheral neurons. In this study, using RT-PCR and in situ RT-PCR, we investigated if Mash1 gene expression occurs in rat taste buds. Further, we examined dynamics of Mash1 expression in the process of degeneration and regeneration in denervated rat taste buds. In rat tongue epithelium, Mash1 gene expression is confined to circumvallate, foliate, and fungiform papilla epithelia that include taste buds. In taste buds, Mash1-expressing cells are round cells in the basal compartment. In contrast, the mature taste bud cells do not express the Mash1 gene. Denervation and regeneration experiments show that the expression of Mash1 requires gustatory innervation. We conclude that Mash1 is expressed in cells of the taste bud lineage, and that the expression of Mash1 in rat taste buds is dependent upon gustatory innervation.  (+info)

Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. (3/665)

Taste represents a major form of sensory input in the animal kingdom. In mammals, taste perception begins with the recognition of tastant molecules by unknown membrane receptors localized on the apical surface of receptor cells of the tongue and palate epithelium. We report the cloning and characterization of two novel seven-transmembrane domain proteins expressed in topographically distinct subpopulations of taste receptor cells and taste buds. These proteins are specifically localized to the taste pore and are members of a new group of G protein-coupled receptors distantly related to putative mammalian pheromone receptors. We propose that these genes encode taste receptors.  (+info)

The effects of beta-bungarotoxin on the morphogenesis of taste papillae and taste buds in the mouse. (4/665)

Although it has been long accepted that innervation by a taste nerve is essential for maintenance of taste buds, it is not clear what role, if any, innervation plays in the morphogenesis of taste papillae and taste bud development. The following study was undertaken to determine what effects lack of sensory innervation have on the development of taste papillae and the formation of taste buds in the mouse. Timed-pregnant female mice (n = 3) at gestational day 12 (gd12) were anesthetized and a 1 microl solution (1 microg/microl) of beta-bungarotoxin (beta-BTX), a neurotoxin that disrupts sensory and motor neuron development, was injected into the amniotic cavity of two embryos per dam. Two shams were injected with PBS. Fetuses were harvested at gd18, 1 day before birth, and four beta-BTX-injected embryos, two shams and two controls were fixed in buffered paraformaldehyde. Serial sections were examined for the presence and morphology of taste papillae and taste buds. No nerve profiles were observed in beta-BTX-injected tongues. Although circumvallate papillae were present on beta-BTX tongues, only five fungiform papillae could be identified. Taste buds were present on a large percentage of fungiform papillae profiles (24%) and on circumvallate papillae in sham and control fetuses; in contrast, no taste buds were associated with taste papillae in beta-BTX fetuses. These results implicate a significant role for innervation in taste papillae and taste bud morphogenesis.  (+info)

Role of brain-derived neurotrophic factor in target invasion in the gustatory system. (5/665)

Brain-derived neurotrophic factor (BDNF) is a survival factor for different classes of neurons, including gustatory neurons. We have studied innervation and development of the gustatory system in transgenic mice overexpressing BDNF under the control of regulatory sequences from the nestin gene, an intermediate filament gene expressed in precursor cells of the developing nervous system and muscle. In transgenic mice, the number and size of gustatory papillae were decreased, circumvallate papillae had a deranged morphology, and there was also a severe loss of lingual taste buds. Paradoxically, similar deficits have been found in BDNF knock-out mice, which lack gustatory neurons. However, the number of neurons in gustatory ganglia was increased in BDNF-overproducing mice. Although gustatory fibers reached the tongue in normal numbers, the amount and density of nerve fibers in gustatory papillae were reduced in transgenic mice compared with wild-type littermates. Gustatory fibers appeared stalled at the base of the tongue, a site of ectopic BDNF expression, where they formed abnormal branches and sprouts. Interestingly, palatal taste buds, which are innervated by gustatory neurons whose afferents do not traverse sites of ectopic BDNF expression, appeared unaffected. We suggest that lingual gustatory deficits in BDNF overexpressing mice are a consequence of the failure of their BDNF-dependent afferents to reach their targets because of the effects of ectopically expressed BDNF on fiber growth. Our findings suggest that mammalian taste buds and gustatory papillae require proper BDNF-dependent gustatory innervation for development and that the correct spatial expression of BDNF in the tongue epithelium is crucial for appropriate target invasion and innervation.  (+info)

Effects of ionic compositions of the medium on monosodium glutamate binding to taste epithelial cells. (6/665)

Monosodium glutamate and nucleotides are umami taste substances in animals and have a synergistic effect on each other. We studied the ligand-binding properties of the glutamate receptors in taste epithelial cells isolated from bovine tongue. Specific glutamate binding was observed in an enriched suspension of taste receptor cells in Hanks' balanced salt solution, while no specific glutamate binding was apparent in the absence of divalent ions or when the cells had been depolarized by a high content of potassium in Hanks' balanced salt solution. There was no significant difference between the release of glutamate under depolarized or divalent ion-free conditions and under normal conditions. However, glutamate was easily released from the depolarized cells in the absence of divalent ions. These data suggest that the binding of glutamate to receptors depends on divalent ions, which also have an effect on maintaining binding between glutamate and receptors.  (+info)

Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. (7/665)

Sensory ganglia that innervate taste buds and gustatory papillae (geniculate and petrosal) are reduced in volume by about 40% in mice with a targeted deletion of the gene for brain-derived neurotrophic factor (BDNF). In contrast, the trigeminal ganglion, which innervates papillae but not taste buds on the anterior tongue, is reduced by only about 18%. These specific alterations in ganglia that innervate taste organs make possible a test for roles of lingual innervation in the development of appropriate number, morphology, and spatial pattern of fungiform and circumvallate papillae and associated taste buds. We studied tongues of BDNF null mutant and wild-type littermates and made quantitative analyses of all fungiform papillae on the anterior tongue, the single circumvallate papilla on the posterior tongue, and all taste buds in both papilla types. Fungiform papillae and taste buds were reduced in number by about 60% and were substantially smaller in diameter in mutant mice 15-25 days postnatal. Remaining fungiform papillae were selectively concentrated in the tongue tip region. The circumvallate papilla was reduced in diameter and length by about 40%, and papilla morphology was disrupted. Taste bud number in the circumvallate was reduced by about 70% in mutant tongues, and the remaining taste buds were smaller than those on wild-type tongues. Our results demonstrate a selective dependence of taste organs on a full complement of appropriate innervation for normal growth and morphogenesis. Effects on papillae are not random but are more pronounced in specific lingual regions. Although the geniculate and petrosal ganglia sustain at least half of their normal complement of cell number in BDNF -/- mice, remaining ganglion cells do not substitute for lost neurons to rescue taste organs at control numbers. Whereas gustatory ganglia and the taste papillae initially form independently, our results suggest interdependence in later development because ganglia derive BDNF support from target organs and papillae require sensory innervation for morphogenesis.  (+info)

Sweet taste responses of mouse chorda tympani neurons: existence of gurmarin-sensitive and -insensitive receptor components. (8/665)

Inhibitory effects of gurmarin (gur) on responses to sucrose and other sweeteners of single fibers of the chorda tympani nerve in C57BL mice were examined. Of 30 single fibers that strongly responded to 0. 5 M sucrose but were not or to lesser extent responsive to 0.1 M NaCl, 0.01 M HCl, and 0.02 M quinine HCl (sucrose-best fibers), 16 fibers showed large suppression of responses to sucrose and other sweeteners by lingual treatment with 4.8 microM (approximately 20 microg/ml) gur (suppressed to 4-52% of control: gur-sensitive fibers), whereas the remaining 14 fibers showed no such gur inhibition (77-106% of control: gur-insensitive fibers). In gur-sensitive fibers, responses to sucrose inhibited by gur recovered to approximately 70% of control responses after rinsing the tongue with 15 mM beta-cyclodextrin and were almost abolished by further treatment with 2% pronase. In gur-insensitive fibers, sucrose responses were not inhibited by gur, but were largely suppressed by pronase. These results suggest existence of two different receptor components for sweeteners with different susceptibilities to gur in mouse taste cells, one gur sensitive and the other gur insensitive. Taste cells possessing each component may be specifically innervated by a particular type of chorda tympani neurons.  (+info)