Isolation of peptides from an enzymatic hydrolysate of food proteins and characterization of their taste properties. (9/2302)

Soybean protein, casein, bonito protein and chicken protein, each as foodstuff protein, were hydrolyzed with four proteinases; namely, pepsin, trypsin, alpha-chymotrypsin and bromelain. Since the chicken protein hydrolysate with bromelain possessed the most favorable umami taste, eleven peptides were isolated from the chicken protein hydrolysate by successive chromatography on ODS, Amberlite IR-120B, Amberlite IRA-410 and AG-50W; their structures were Asp-Ala, Asp-Val, Glu-Glu, Glu-Val, Ala-Asp-Glu, Ala-Glu-Asp, Asp-Glu-Glu, Asp-Glu-Ser, Glu-Glu-Asn, Ser-Pro-Glu, and Glu-Pro-Ala-Asp. Many of them did not show any umami taste by themselves, but Glu-Glu, Glu-Val, Ala-Asp-Glu, Ala-Glu-Asp, Asp-Glu-Glu, and Ser-Pro-Glu were recognized to enhance the umami taste of 0.02% 5'-inosine monophosphate (IMP). A combination of these peptides, especially 0.5% each of Glu-Glu, Glu-Val, Asp-Glu-Glu and Glu-Glu-Asn, with 0.02% IMP produced a delicious "full" umami taste.  (+info)

Spatio-temporal analysis of cortical activity evoked by gustatory stimulation in humans. (10/2302)

Gustatory activated regions in the cerebral cortex have not been identified precisely in humans. In this study we recorded the magnetic fields from the brain in response to two tastants, 1 M NaCl and 3 mM saccharin. We estimated the location of areas activated sequentially after the onset of stimulation with magnetic source imaging. We investigated the primary gustatory area (area G) precisely, and found it at the transition between the parietal operculum and the insular cortex. The central sulcus was activated less frequently than area G but with almost the same latency in cases of NaCl stimulation. Following area G, we found activation in several cortical regions, e.g. both the frontal operculum and the anterior part of the insula, the hippocampus, the parahippocampal gyrus and the superior temporal sulcus.  (+info)

"Sucrose analgesia": absorptive mechanism or taste perception? (11/2302)

It remains unclear whether "sucrose analgesia" is related to a pre- or postabsorptive mechanism. In a double blind cross over study sucrose reduced the pain response of preterm infants exposed to heel prick blood samples only when it was administered into the mouth. It was ineffective when administered intragastrically.  (+info)

Nutrient intakes in relation to style of breakfast and taste preferences. (12/2302)

Style of breakfast (western- or Japanese-style) and taste preferences were associated with various diseases in some epidemiological studies in Japan. To evaluate what are measured by asking these dietary behaviors, we administered semiquantitative food frequency questionnaire (SFFQ) and asked style of breakfast and taste preferences to a subsample of residents in Takayama City, Gifu, Japan. Style of breakfast and total diet were studied in a random sample of 346 residents. There were no statistically significant differences in the nutrient intakes estimated from SFFQ between those with western- and Japanese-style of breakfast except for crude fiber. Taste preferences were asked to 555 men and 1,130 women who attended a health check-up program in the community. Salt intakes were slightly higher (< 3%) in those who had a favor for salty food than the others in both sexes. Fat or carbohydrate intake was similar between those stratified by preference for greasy or sweet foods. The data suggest that western-style of breakfast is not associated with western diet, in general, i.e., high-calorie and high-fat diet. Intakes of salt, fat, or carbohydrate appear to be unrelated to preferences for salty, greasy or sweet foods, respectively.  (+info)

Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. (13/2302)

The basal forebrain complex, which includes the nucleus basalis magnocellularis (NBM), provides widespread cholinergic and gamma-aminobutyric acid-containing projections throughout the brain, including the insular and pyriform cortices. A number of studies have implicated the cholinergic neurons in the mediation of learning and memory processes. However, the role of basal forebrain activity in information retrieval mechanisms is less known. The aim of the present study is to evaluate the effects of reversible inactivation of the NBM by tetrodotoxin (TTX, a voltage-sensitive sodium channel blocker) during the acquisition and retrieval of conditioned taste aversion (CTA) and to measure acetylcholine (ACh) release during TTX inactivation in the insular cortex, by means of the microdialysis technique in free-moving rats. Bilateral infusion of TTX in the NBM was performed 30 min before the presentation of gustative stimuli, in either the CTA acquisition trial or retrieval trial. At the same time, levels of extracellular ACh release were measured in the insular cortex. The behavioral results showed significant impairment in CTA acquisition when the TTX was infused in the NBM, whereas retrieval was not affected when the treatment was given during the test trial. Biochemical results showed that TTX infusion into the NBM produced a marked decrease in cortical ACh release as compared with the controls during consumption of saccharin in the acquisition trial. Depleted ACh levels were found during the test trial in all groups except in the group that received TTX during acquisition. These results suggest a cholinergic-dependent process during acquisition, but not during memory retrieval, and that NBM-mediated cholinergic cortical release may play an important role in early stages of learning, but not during recall of aversive memories.  (+info)

Rapid, labile, and protein synthesis-independent short-term memory in conditioned taste aversion. (14/2302)

Short-term memory is a rapid, labile, and protein-synthesis-independent phase of memory. The existence of short-term memory in conditioned taste aversion (CTA) learning has not been demonstrated formally. To determine the earliest time at which a CTA is expressed, we measured intraoral intake of sucrose at 15 min, 1 hr, 6 hr, or 48 h after contingent pairing of an intraoral infusion of 5% sucrose (6.6 ml over 6 min) and toxic lithium chloride injection (76 mg/kg). Rats were implanted with intraoral catheters to allow presentation of taste solutions at arbitrary times. Intraoral intake was measured under conditions of long-delay, single-trial learning typical of CTA. Rats decreased intraoral intake of sucrose at 15 min after contingent pairing of sucrose and LiCl, but not after noncontingent LiCl or sucrose. Thus CTA learning can be expressed rapidly. To determine if short-term CTA memory is labile and decays in the absence of long-term memory, we measured intraoral intake of sucrose after pairing sucrose with low doses of LiCl. Rats received an intraoral infusion of 5% sucrose (6 ml/6 min); 30 min later LiCl was injected at three different doses (19, 38, or 76 mg/kg). A second intraoral infusion of sucrose was administered 15 min, 1 hr, 3 hr, 4.5 hr, 6 hr, or 48 hr later. The formation of long-term CTA memory was dependent on the dose of LiCl paired with sucrose during acquisition. Low doses of LiCl induced a CTA that decayed within 6 hr after pairing. Central administration of the protein synthesis inhibitor cycloheximide prior to LiCl injection blocked long-term CTA expression at 6 and 48 hr, but not short-term CTA expression at 1 hr. Thus, short-term memory for CTA learning exists that is acquired rapidly and independent of protein synthesis, but labile in the absence of long-term memory formation.  (+info)

Amiloride-sensitive sodium signals and salt appetite: multiple gustatory pathways. (15/2302)

In the rat, the ionic specificity of Na+ appetite is thought to rely on amiloride-sensitive Na+ signals conveyed by the chorda tympani (CT) nerve. We evaluated whether robust Na+ appetite relies exclusively on CT-mediated amiloride-sensitive Na+ signals. Amiloride dramatically reduced sham drinking of NaCl (41.9 +/- 9.0 vs. 6.9 +/- 3.7 ml, 0.1 M NaCl without vs. with 100 microM amiloride), which resulted in intake that was not different from intake of a non-Na+ salt solution (8.8 +/- 2.3 ml, 0.15 M KCl). In addition, intake of 0.1 M NaCl in CT-transected (CTX) rats was reduced (35.8 +/- 13.3 vs. 8.67 +/- 3.4 ml, sham-operated vs. CTX rats), but the addition of amiloride (100 microM) further reduced intake in CTX rats (0.5 +/- 0.29 ml). These data support the idea that amiloride-sensitive Na+ channels are the critical gustatory substrate for Na+ identification during Na+ appetite in the rat. However, the data indicate that these amiloride-sensitive signals are not conveyed exclusively by the CT nerve but by an additional afferent pathway.  (+info)

Neural representation of the taste of NaCl and KCl in gustatory neurons of the hamster solitary nucleus. (16/2302)

NaCl and KCl are monovalent salts that can be discriminated behaviorally by hamsters on the basis of their tastes. We examined the effects of the passive Na+ channel blocker amiloride on responses to both of these salts in 34 taste-responsive neurons of the nucleus of the solitary tract (NST) in the hamster. The effects of amiloride were assessed with two different, commonly employed stimulus protocols. Additionally, concentration-response functions for each salt were measured in 37 neurons. Cells were characterized by their best response to (in M) 0. 03 NaCl, 0.1 sucrose, 0.003 HCl, 0.001 quinine hydrochloride, and 0. 1 KCl. In neurons classified as NaCl-best, amiloride reversibly blocked responses to both NaCl and KCl. In neurons classified as HCl-best, amiloride had no effect on either stimulus. In sucrose-best neurons, amiloride blocked the response to NaCl but not KCl. These results support the hypothesis that both salts are transduced by at least two different receptor mechanisms. In the NST, information arising from these different inputs is maintained in discrete populations of neurons. In addition to differences in amiloride sensitivity, the cell types also differed in their responses to the salts across concentration. At midrange salt concentrations, NaCl-best neurons were far more responsive to NaCl than KCl, whereas HCl- and sucrose-best neurons responded equivalently to the two salts at all concentrations. Because NaCl- and HCl-best cells cannot by themselves distinguish NaCl from KCl, it is the relative activity across these cell types that comprises the code for taste discrimination.  (+info)