Characterization of calcium oxalates generated as biominerals in cacti. (1/37)

The chemical composition and morphology of solid material isolated from various Cactaceae species have been analyzed. All of the tested specimens deposited high-purity calcium oxalate crystals in their succulent modified stems. These deposits occurred most frequently as round-shaped druses that sometimes coexist with abundant crystal sand in the tissue. The biominerals were identified either as CaC(2)O(4).2H(2)O (weddellite) or as CaC(2)O(4).H(2)O (whewellite). Seven different species from the Opuntioideae subfamily showed the presence of whewellite, and an equal number of species from the Cereoideae subfamily showed the deposition of weddellite. The chemical nature of these deposits was assessed by infrared spectroscopy. The crystal morphology of the crystals was visualized by both conventional light and scanning electron microscopy. Weddellite druses were made up of tetragonal crystallites, whereas those from whewellite were most often recognized by their acute points and general star-like shape. These studies clearly demonstrated that members from the main traditional subfamilies of the Cactaceae family could synthesize different chemical forms of calcium oxalate, suggesting a definite but different genetic control. The direct relationship established between a given Cactaceae species and a definite calcium oxalate biomineral seems to be a useful tool for plant identification and chemotaxonomy.  (+info)

Constituents with radical scavenging effect from Opuntia dillenii: structures of new alpha-pyrones and flavonol glycoside. (2/37)

The aqueous ethanolic extract from the fresh stems of Opuntia dillenii HAW. showed potent radical scanvenging activity. Three new compounds, opuntioside I, 4-ethoxyl-6-hydroxymethyl-alpha-pyrone, and kaempferol 7-O-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranoside, were isolated from the extract. The structures of the new compounds were determined on the basis of chemical and physicochemical evidence and the radical scavenging effects of principal constituents were examined.  (+info)

Carbon and water relations for developing fruits of Opuntia ficus-indica (L.) Miller, including effects of drought and gibberellic acid. (3/37)

Growth, gas exchange rates, and carbohydrate content were studied for developing fruits of the cultivated cactus Opuntia ficus-indica (L.) Miller, including effects of drought and exogenous gibberellic acid (GA3). Fruit development required 110 d from the time of bud differentiation to ripening at 80 d after anthesis, when the fruit mass averaged 67 g. Stomatal conductance and net CO2 uptake rates for fruits were higher during the night; they were maximal at 7 d before anthesis and decreased as development progressed. Fruits undergoing drought, imposed by detaching terminal stems bearing fruits, were 50% smaller than the control at 80 d after anthesis and did not ripen. Fruits injected with 2 ml of 500 ppm GA3 were 30% smaller than the control at 80 d after anthesis; they contained a large proportion of aborted seeds that produced a weak sink signal for dry mass accumulation. Gas exchange was higher at 21 d after anthesis for fruits treated with GA3. Total soluble sugars represented 40% of the fruit's dry mass until 45 d after anthesis, when the sugar content rapidly increased, reaching 90% at 73 d after anthesis. Such an increase was not observed for fruits treated with GA3, and the sugar content for fruits undergoing drought remained low throughout development. Starch content increased for developing fruits of O. ficus-indica until 14 d after anthesis and, except for the fruits undergoing drought, decreased thereafter. Fruit development for O. ficus-indica is apparently regulated by water availability as well as hormonal signals originating both within and outside the fruit.  (+info)

Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: a comparative study with vitamin C. (4/37)

BACKGROUND: Cactus pear (Opuntia ficus-indica) fruit contains vitamin C and characteristic betalain pigments, the radical-scavenging properties and antioxidant activities of which have been shown in vitro. OBJECTIVE: We investigated the effects of short-term supplementation with cactus pear fruit compared with vitamin C alone on total-body oxidative status in healthy humans. DESIGN: In a randomized, crossover, double-treatment study, 18 healthy volunteers received either 250 g fresh fruit pulp or 75 mg vitamin C twice daily for 2 wk, with a 6-wk washout period between the treatments. Before (baseline) and after each treatment, 8-epi-prostaglandin F(2alpha) (8-epi-PGF(2alpha)) and malondialdehyde in plasma, the ratio of reduced to oxidized glutathione (GSH:GSSG) in erythrocytes, and lipid hydroperoxides in LDL were measured as biomarkers of oxidative stress; plasma Trolox-equivalent antioxidant activity (TEAC) and vitamins A, E, and C were evaluated as indexes of antioxidant status. RESULTS: Both treatments caused comparable increases compared with baseline in plasma concentrations of vitamin E and vitamin C (P < 0.05); vitamin A and TEAC did not change significantly. After supplementation with cactus pear fruit, 8-epi-PGF(2)alpha and malondialdehyde decreased by approximately 30% and 75%, respectively; GSH:GSSG shifted toward a higher value (P < 0.05); and LDL hydroperoxides were reduced by almost one-half. Supplementation with vitamin C did not significantly affect any marker of oxidative stress. CONCLUSIONS: Consumption of cactus pear fruit positively affects the body's redox balance, decreases oxidative damage to lipids, and improves antioxidant status in healthy humans. Supplementation with vitamin C at a comparable dosage enhances overall antioxidant defense but does not significantly affect body oxidative stress. Components of cactus pear fruit other than antioxidant vitamins may play a role in the observed effects.  (+info)

Young daughter cladodes affect CO2 uptake by mother cladodes of Opuntia ficus-indica. (5/37)

BACKGROUND AND AIMS: Drought damages cultivated C3, C4 and CAM plants in the semi-arid lands of central Mexico. Drought damage to Opuntia is common when mother cladodes, planted during the dry spring season, develop young daughter cladodes that behave like C3 plants, with daytime stomatal opening and water loss. In contrast, wild Opuntia are less affected because daughter cladodes do not develop on them under extreme drought conditions. The main objective of this work is to evaluate the effects of the number of daughter cladodes on gas exchange parameters of mother cladodes of Opuntia ficus-indica exposed to varying soil water contents. METHODS: Rates of net CO2 uptake, stomatal conductance, intercellular CO2 concentration, chlorophyll content and relative water content were measured in mature mother cladodes with a variable number of daughter cladodes growing in spring under dry and wet conditions. KEY RESULTS: Daily carbon gain by mother cladodes was reduced as the number of daughter cladodes increased to eight, especially during drought. This was accompanied by decreased mother cladode relative water content, suggesting movement of water from mother to daughter cladodes. CO2 assimilation was most affected in phase IV of CAM (late afternoon net CO2 uptake) by the combined effects of daughter cladodes and drought. Rainfall raised the soil water content, decreasing the effects of daughter cladodes on net CO2 uptake by mother cladodes. CONCLUSIONS: Daughter cladodes significantly hasten the effects of drought on mother cladodes by competition for the water supply and thus decrease daily carbon gain by mother cladodes, mainly by inhibiting phase IV of CAM.  (+info)

Volatile organic compounds as signals in a plant-herbivore system: electrophysiological responses in olfactory sensilla of the moth Cactoblastis cactorum. (6/37)

The morphological sensillum types on the antennae of male and female Cactoblastis cactorum were visualized by scanning electron microscopy. Electrophysiological recordings were performed for the first time on single olfactory sensilla of C. cactorum. The male sensilla trichodea house a receptor cell responding to the putative pheromone component (9Z,12E)-tetradecadienyl acetate. The sensilla trichodea of the females were much shorter than those of the males and contained specialized receptor cells responding to certain terpenoids, the most frequent being the nerolidol-sensitive cell. The sensilla auricillica and sensilla basiconica of both sexes contained cells responding less specifically to terpenoid compounds as well as to green leaf volatiles. Cells of the sensilla coeloconica responded to aliphatic aldehydes and acids. Eight volatile organic compounds emitted by Opuntia stricta, a host plant of C. cactorum, were identified using gas chromatography-mass spectrometry, beta-caryophyllene being the major compound. Five compounds identified by gas chromatography in the headspace of O. stricta elicited responses in olfactory receptor cells of C. cactorum, nonanal being the most active compound and therefore a candidate attractant of C. cactorum.  (+info)

Hypotensive activity, toxicology and histopathology of opuntioside-I and methanolic extract of Opuntia dillenii. (7/37)

Methanolic extract of Opuntia dillenii cladodes and its pure compound alpha-pyrone glycoside, opuntioside-I showed potent hypotensive activity in normotensive rats. Both the extract and opuntioside-I showed comparable effect of 44-54% fall in Mean Arterial Blood Pressure (MABP) at the dose of 10 mg/kg. No mortality was observed in rats even at the doses of 1000 mg/kg/d and 900 mg/kg/d per oral of extract and opuntioside-I respectively. However, histopathology revealed adverse effects of high doses on liver and spleen of the experimental animals.  (+info)

Morphological and secretory characterization of extrafloral nectaries in plants of coastal Veracruz, Mexico. (8/37)

BACKGROUND AND AIMS: Morphological descriptions of the extrafloral nectaries (EFNs) of certain plant species are common in the literature, but they rarely relate morphology with histology, gland distribution and secretory attributes. In this study a morphological/secretory characterization of EFNs occurring on several plant species in a tropical coastal community is made and the implications of gland attributes discussed from a functional perspective. METHODS: The morphology and nectar secretion of the EFNs of 20 plant species are characterized through scanning electron microscopy, histochemical detection of reducing sugars (Fehling's reagent) and nectar volume/concentration estimates. KEY RESULTS: Sixty-five per cent of plant species in coastal communities had EFNs on vegetative structures and 35 % of species had glands on reproductive and vegetative organs. The Fabaceae is the plant family with the most species with EFNs and most diversity of gland morphologies. Four types of vascularized nectaries and four of glandular trichomes are described; sugar-secreting trichomes are characterized using Fehling's technique, and the first descriptions of unicellular and peltate trichomes functioning as EFNs are provided. Glands of ten plant species and six genera are described for the first time. Four plant species possess more than one morphological type of EFN. Eleven species have EFNs in more than one location or organ. More complex glands secrete more nectar, but are functionally homologous to the aggregations of numerous secretory trichomes on specific and valuable plant organs. CONCLUSION: Important diversity of EFN morphology was foundin the coastal plant community studied. Both vascularized and non-vascularized EFNs are observed in plants and, for the latter, previously non-existent morpho-secretory characterizations are provided with a methodological approach to study them. It is recommended that studies relating EFN attributes (i.e. morphology, distribution) with their differential visitation by insects (i.e. ants) and the cost of maintenance to the plants are carried out to understand the evolution of these glands.  (+info)