Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors. (1/242)

 (+info)

Protanomaly without darkened red is deuteranopia with rods. (2/242)

 (+info)

Expression patterns of the opsin 5-related genes in the developing chicken retina. (3/242)

 (+info)

Evolution of vertebrate visual pigments. (4/242)

 (+info)

The photoreceptor populations in the retina of the greater horseshoe bat Rhinolophus ferrumequinum. (5/242)

Recently, we reported the existence of AII "rod" amacrine cells in the retina of the greater horseshoe bat Rhinolophus ferrumequinum (Jeon et al., 2007). In order to enhance our understanding of bat vision, in the present study, we report on a quantitative analysis of cone and rod photoreceptors. The average cone density was 9,535 cells/mm2, giving a total number of cones of 33,538 cells/retina. The average rod density was 368,891 cells/mm2, giving a total number of rods of 1,303,517 cells. On average, the total populations of rods were 97.49%, and cones were 2.51% of all the photoreceptors. Rod: cone ratios ranged from 33.85:1 centrally to 42.26:1 peripherally, with a mean ratio of 38.96:1. The average regularity index of the cone mosaic in bat retina was 3.04. The present results confirm the greater horseshoe bat retina to be strongly rod-dominated. The rod-dominated retina, with the existence of AII cells discovered in our previous study, strongly suggests that the greater horseshoe bat retina has a functional scotopic property of vision. However, the existence of cone cells also suggests that the bat retina has a functional photopic property of vision.  (+info)

Unique transducins expressed in long and short photoreceptors of lamprey Petromyzon marinus. (6/242)

 (+info)

Effects of long-term administration of 9-cis-retinyl acetate on visual function in mice. (7/242)

 (+info)

Staphylococcus aureus capsule type 8 antibodies provide inconsistent efficacy in murine models of staphylococcal infection. (8/242)

Staphylococcus aureus is a clinically important capsule-forming bacterium. The capsule polysaccharide (CPs) occurs as different chemical structures depending on the serotype of the organism, but one form, capsular polysaccharide type 8 (CPs8) found in clinical isolates, is largely unstudied. The potential of CPs8 as a vaccine target was evaluated using two approaches. The first approach used a conjugate vaccine, made by chemically linking purified CPs8 to the outer membrane protein complex of N. meningitidis serotype B (OMPC). In efficacy studies, the CPs8-OMPC conjugate vaccine was immunogenic in Balb/c mice, however the immune response gave no protection from death after a lethal intravenous (IV) challenge with S. aureus Becker. In the second approach, two monoclonal antibodies were produced against CPs8 (mAbs 8E8 and 1C10). These were found to have functional activity in an opsonophagocytic killing assay (OPA), and provided protection from a lethal challenge when bacteria were pre-opsonized ex vivo before intra-peritoneal (IP) challenge. However, mAb 8E8 was not efficacious in the lethal challenge model, in which antibodies were passively transferred to the peritoneum and the animals were infected via the tail vein 18-24 h later. Additionally, the monoclonal antibodies did not opsonize capsule-expressing S. aureus Becker obtained from in vivo growth conditions. These results indicated that functional capsule antibodies may not be sufficient for protection from S. aureus under all in vivo conditions.  (+info)