Improving the performance of dictionary-based approaches in protein name recognition. (33/196)

Dictionary-based protein name recognition is often a first step in extracting information from biomedical documents because it can provide ID information on recognized terms. However, dictionary-based approaches present two fundamental difficulties: (1) false recognition mainly caused by short names; (2) low recall due to spelling variations. In this paper, we tackle the former problem using machine learning to filter out false positives and present two alternative methods for alleviating the latter problem of spelling variations. The first is achieved by using approximate string searching, and the second by expanding the dictionary with a probabilistic variant generator, which we propose in this paper. Experimental results using the GENIA corpus revealed that filtering using a naive Bayes classifier greatly improved precision with only a slight loss of recall, resulting in 10.8% improvement in F-measure, and dictionary expansion with the variant generator gave further 1.6% improvement and achieved an F-measure of 66.6%.  (+info)

Use of morphological analysis in protein name recognition. (34/196)

Protein name recognition aims to detect each and every protein names appearing in a PubMed abstract. The task is not simple, as the graphic word boundary (space separator) assumed in conventional preprocessing does not necessarily coincide with the protein name boundary. Such boundary disagreement caused by tokenization ambiguity has usually been ignored in conventional preprocessing of general English. In this paper, we argue that boundary disagreement poses serious limitations in biomedical English text processing, not to mention protein name recognition. Our key idea for dealing with the boundary disagreement is to apply techniques used in Japanese morphological analysis where there are no word boundaries. Having evaluated the proposed method with GENIA corpus 3.02, we obtain F-measure of 69.01 on a strict criterion and 79.32 on a relaxed criterion. The result is comparable to other published work in protein name recognition, without resorting to manually prepared ad hoc feature engineering. Further, compared to the conventional preprocessing, the use of morphological analysis as preprocessing improves the performance of protein name recognition and reduces the execution time.  (+info)

Using automatically learnt verb selectional preferences for classification of biomedical terms. (35/196)

In this paper, we present an approach to term classification based on verb selectional patterns (VSPs), where such a pattern is defined as a set of semantic classes that could be used in combination with a given domain-specific verb. VSPs have been automatically learnt based on the information found in a corpus and an ontology in the biomedical domain. Prior to the learning phase, the corpus is terminologically processed: term recognition is performed by both looking up the dictionary of terms listed in the ontology and applying the C/NC-value method for on-the-fly term extraction. Subsequently, domain-specific verbs are automatically identified in the corpus based on the frequency of occurrence and the frequency of their co-occurrence with terms. VSPs are then learnt automatically for these verbs. Two machine learning approaches are presented. The first approach has been implemented as an iterative generalisation procedure based on a partial order relation induced by the domain-specific ontology. The second approach exploits the idea of genetic algorithms. Once the VSPs are acquired, they can be used to classify newly recognised terms co-occurring with domain-specific verbs. Given a term, the most frequently co-occurring domain-specific verb is selected. Its VSP is used to constrain the search space by focusing on potential classes of the given term. A nearest-neighbour approach is then applied to select a class from the constrained space of candidate classes. The most similar candidate class is predicted for the given term. The similarity measure used for this purpose combines contextual, lexical, and syntactic properties of terms.  (+info)

Using name-internal and contextual features to classify biological terms. (36/196)

There has been considerable work done recently in recognizing named entities in biomedical text. In this paper, we investigate the named entity classification task, an integral part of the named entity extraction task. We focus on the different sources of information that can be utilized for classification, and note the extent to which they are effective in classification. To classify a name, we consider features that appear within the name as well as nearby phrases. We also develop a new strategy based on the context of occurrence and show that they improve the performance of the classification system. We show how our work relates to previous works on named entity classification in the biological domain as well as to those in generic domains. The experiments were conducted on the GENIA corpus Ver. 3.0 developed at University of Tokyo. We achieve f value of 86 in 10-fold cross validation evaluation on this corpus.  (+info)

Term identification in the biomedical literature. (37/196)

Sophisticated information technologies are needed for effective data acquisition and integration from a growing body of the biomedical literature. Successful term identification is key to getting access to the stored literature information, as it is the terms (and their relationships) that convey knowledge across scientific articles. Due to the complexities of a dynamically changing biomedical terminology, term identification has been recognized as the current bottleneck in text mining, and--as a consequence--has become an important research topic both in natural language processing and biomedical communities. This article overviews state-of-the-art approaches in term identification. The process of identifying terms is analysed through three steps: term recognition, term classification, and term mapping. For each step, main approaches and general trends, along with the major problems, are discussed. By assessing previous work in context of the overall term identification process, the review also tries to delineate needs for future work in the field.  (+info)

Building a protein name dictionary from full text: a machine learning term extraction approach. (38/196)

BACKGROUND: The majority of information in the biological literature resides in full text articles, instead of abstracts. Yet, abstracts remain the focus of many publicly available literature data mining tools. Most literature mining tools rely on pre-existing lexicons of biological names, often extracted from curated gene or protein databases. This is a limitation, because such databases have low coverage of the many name variants which are used to refer to biological entities in the literature. RESULTS: We present an approach to recognize named entities in full text. The approach collects high frequency terms in an article, and uses support vector machines (SVM) to identify biological entity names. It is also computationally efficient and robust to noise commonly found in full text material. We use the method to create a protein name dictionary from a set of 80,528 full text articles. Only 8.3% of the names in this dictionary match SwissProt description lines. We assess the quality of the dictionary by studying its protein name recognition performance in full text. CONCLUSION: This dictionary term lookup method compares favourably to other published methods, supporting the significance of our direct extraction approach. The method is strong in recognizing name variants not found in SwissProt.  (+info)

Integration of the Gene Ontology into an object-oriented architecture. (39/196)

BACKGROUND: To standardize gene product descriptions, a formal vocabulary defined as the Gene Ontology (GO) has been developed. GO terms have been categorized into biological processes, molecular functions, and cellular components. However, there is no single representation that integrates all the terms into one cohesive model. Furthermore, GO definitions have little information explaining the underlying architecture that forms these terms, such as the dynamic and static events occurring in a process. In contrast, object-oriented models have been developed to show dynamic and static events. A portion of the TGF-beta signaling pathway, which is involved in numerous cellular events including cancer, differentiation and development, was used to demonstrate the feasibility of integrating the Gene Ontology into an object-oriented model. RESULTS: Using object-oriented models we have captured the static and dynamic events that occur during a representative GO process, "transforming growth factor-beta (TGF-beta) receptor complex assembly" (GO:0007181). CONCLUSION: We demonstrate that the utility of GO terms can be enhanced by object-oriented technology, and that the GO terms can be integrated into an object-oriented model by serving as a basis for the generation of object functions and attributes.  (+info)

Contextual weighting for Support Vector Machines in literature mining: an application to gene versus protein name disambiguation. (40/196)

BACKGROUND: The ability to distinguish between genes and proteins is essential for understanding biological text. Support Vector Machines (SVMs) have been proven to be very efficient in general data mining tasks. We explore their capability for the gene versus protein name disambiguation task. RESULTS: We incorporated into the conventional SVM a weighting scheme based on distances of context words from the word to be disambiguated. This weighting scheme increased the performance of SVMs by five percentage points giving performance better than 85% as measured by the area under ROC curve and outperformed the Weighted Additive Classifier, which also incorporates the weighting, and the Naive Bayes classifier. CONCLUSION: We show that the performance of SVMs can be improved by the proposed weighting scheme. Furthermore, our results suggest that in this study the increase of the classification performance due to the weighting is greater than that obtained by selecting the underlying classifier or the kernel part of the SVM.  (+info)