Synergistic protective effects of antioxidant and nitric oxide synthase inhibitor in transient focal ischemia. (1/1201)

Both nitric oxide synthase (NOS) inhibitors and free radical scavengers have been shown to protect brain tissue in ischemia-reperfusion injury. Nitric oxide and superoxide anion act via distinct mechanisms and react together to form the highly deleterious peroxynitrite. Therefore the authors examined the effects and the interaction between the NOS inhibitor, NG nitro-L-arginine (LNA) and the antioxidant/superoxide scavenger, di-tert-butyl-hydroxybenzoic acid (DtBHB) in the rat submitted to 2 hours of middle cerebral artery occlusion. Posttreatment was initiated 4 hours after the onset of ischemia and infarct volume was measured at 48 hours. The dose-related effect of LNA resulted in a bell-shaped curve: 15, 56, 65, and 33% reduction of total infarct for 0.03, 0.1, 0.3, and 1 mg/kg (intravenously [IV]) respectively and 11% increase in infarct volume for 3 mg/kg (IV). Whereas DtBHB (20 mg/kg; intraperitoneally [IP]) was ineffective, the dose of 60 mg/kg produced 65% protection in infarct volume. The combination of a subthreshold dose of LNA (0.03 mg/kg; IV) and DtBHB (20 mg/kg; IP) resulted in significant reduction (49%) in infarct volume. These results show that LNA and DtBHB act synergistically to provide a consistent neuroprotection against ischemic injury when administered 4 hours after ischemia. This suggests that nitric oxide and free radicals are involved and interact in synergy in ischemia-reperfusion injury.  (+info)

Neurogenic vasodilatation of canine isolated small labial arteries. (2/1201)

Mechanisms underlying vasodilatation to nerve stimulation by electrical pulses and nicotine were analyzed in isolated canine small labial arteries. Transmural electrical stimulation (5 and 20 Hz) produced a contraction followed by a relaxation in labial arterial strips denuded of the endothelium, partially contracted with prostaglandin F2alpha. The contraction was abolished by prazosin or combined treatment with alpha, beta-methylene ATP. In the treated strips, neurogenic relaxation was abolished by NG-nitro-L-arginine (L-NA), a nitric oxide (NO) synthase inhibitor, and restored by L-arginine. The D-enantiomers were without effect. Nicotine (10(-4) M) also relaxed the arteries, in which the contractile response was abolished by prazosin and alpha, beta-methylene ATP. The relaxant response was attenuated but not abolished by L-NA; the inhibition was reversed by L-arginine. The remaining relaxation by nicotine was abolished by calcitonin gene-related peptide (CGRP)-[8 to 37], a CGRP1 receptor antagonist. Relaxations elicited by a lower concentration of nicotine (2 x 10(-5) M) sufficient to produce similar magnitudes of response to those induced by 5-Hz electrical nerve stimulation were also inhibited partially by L-NA. Histochemical study with the NADPH-diaphorase method demonstrated positively stained nerve fibers and bundles in the arterial wall, suggesting the presence of neuronal NO synthase. It is concluded that the relaxation induced by electrical nerve stimulation of small labial arteries is mediated exclusively by NO synthesized from L-arginine in nerve terminals, whereas nicotine in the concentrations used evokes relaxations by a mediation of nerve-derived NO and also CGRP, possibly from sensory nerves. The reason why nicotine but not electrical pulses stimulates sensory nerves and elicits vasorelaxation remains unsolved.  (+info)

Effects of tumour necrosis factor-alpha on left ventricular function in the rat isolated perfused heart: possible mechanisms for a decline in cardiac function. (3/1201)

1. The cardiac depressant actions of TNF were investigated in the isolated perfused rat heart under constant flow (10 ml min(-1)) and constant pressure (70 mmHg) conditions, using a recirculating (50 ml) mode of perfusion. 2. Under constant flow conditions TNF (20 ng ml(-1)) caused an early (< 25 min) decrease in left ventricular developed pressure (LVDP), which was maintained for 90 min (LVDP after 90 min: control vs TNF; 110 +/- 4 vs 82 +/- 10 mmHg, P < 0.01). 3. The depression in cardiac function seen with TNF under constant flow conditions, was blocked by the ceramidase inhibitor N-oleoylethanolamine (NOE), 1 microM, (LVDP after 90 min: TNF vs TNF with NOE; 82 +/- 10 vs 11 +/- 5 mmHg, P < 0.05). 4. In hearts perfused at constant pressure, TNF caused a decrease in coronary flow rate (change in flow 20 min after TNF: control vs TNF; -3.0 +/- 0.9 vs -8.7 +/- 1.2 ml min(-1), P < 0.01). This was paralleled by a negative inotropic effect (change in LVDP 20 min after TNF: control vs TNF; -17 +/- 7 vs -46 +/- 6 mmHg, P < 0.01). The decline in function was more rapid and more severe than that seen under conditions of constant flow. 5. These data indicate that cardiac function can be disrupted by TNF on two levels, firstly via a direct, ceramidase dependant negative inotropic effect, and secondly via an indirect coronary vasoconstriction.  (+info)

Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice. (4/1201)

1. Isometric tension was recorded in isolated rings of aorta, carotid, coronary and mesenteric arteries taken from endothelial nitric oxide synthase knockout mice (eNOS(-/-) mice) and the corresponding wild-type strain (eNOS(+/+) mice). The membrane potential of smooth muscle cells was measured in coronary arteries with intracellular microelectrodes. 2. In the isolated aorta, carotid and coronary arteries from the eNOS(+/+) mice, acetylcholine induced an endothelium-dependent relaxation which was inhibited by N(omega)-L-nitro-arginine. In contrast, in the mesenteric arteries, the inhibition of the cholinergic relaxation required the combination of N(omega)-L-nitro-arginine and indomethacin. 3. The isolated aorta, carotid and coronary arteries from the eNOS(-/-) mice did not relax in response to acetylcholine. However, acetylcholine produced an indomethacin-sensitive relaxation in the mesenteric artery from eNOS(-/-) mice. 4. The resting membrane potential of smooth muscle cells from isolated coronary arteries was significantly less negative in the eNOS(-/-) mice (-64.8 +/- 1.8 mV, n = 20 and -58.4 +/- 1.9 mV, n = 17, for eNOS(+/+) and eNOS(-/-) mice, respectively). In both strains, acetylcholine, bradykinin and substance P did not induce endothelium-dependent hyperpolarizations whereas cromakalim consistently produced hyperpolarizations (- 7.9 +/- 1.1 mV, n = 8 and -13.8 +/- 2.6 mV, n = 4, for eNOS(+/+) and eNOS(-/-) mice, respectively). 5. These findings demonstrate that in the blood vessels studied: (1) in the eNOS(+/+) mice, the endothelium-dependent relaxations to acetylcholine involve either NO or the combination of NO plus a product of cyclo-oxygenase but not EDHF; (2) in the eNOS(-/-) mice, NO-dependent responses and EDHF-like responses were not observed. In the mesenteric arteries acetylcholine releases a cyclo-oxygenase derivative.  (+info)

In vitro simultaneous measurements of relaxation and nitric oxide concentration in rat superior mesenteric artery. (5/1201)

1. The relationship between nitric oxide (NO) concentration measured with an NO-specific microelectrode and endothelium-dependent relaxation was investigated in isolated rat superior mesenteric artery contracted with 1 microM noradrenaline. 2. Acetylcholine (10 microM) induced endothelium-dependent simultaneous increases in luminal NO concentration of 21 +/- 6 nM, and relaxations with pD2 values and maximum of 6.95 +/- 0.32 and 97.5 +/- 0.7 % (n = 7), respectively. An inhibitor of NO synthase, N G-nitro-L-arginine (L-NOARG, 100 microM) inhibited the relaxations and increases in NO concentration induced by acetylcholine. 3. Oxyhaemoglobin (10 microM) reversed the relaxations and increases in NO concentrations induced by acetylcholine, S-nitroso-N-acetylpenicillamine (SNAP) and S-morpholino-sydnonimine (SIN-1), but not the relaxations induced with forskolin. Oxyhaemoglobin also decreased the NO concentration below baseline level. 4. In the presence of L-NOARG (100 microM), a small relaxation to acetylcholine (10 microM) of noradrenaline-contracted segments was still seen; oxyhaemogobin inhibited this relaxation and decreased the NO concentration by 14 +/- 4 nM (n = 4). 5. The NO concentration-relaxation relationship for acetylcholine resembled that for SNAP and SIN-1 more than for authentic NO. Thus while 7-17 nM NO induced half-maximal relaxations in response to SNAP or SIN-1, 378 +/- 129 nM NO (n = 4) was needed for half-maximal relaxation to authentic NO. 6. The present study provides direct evidence that the relaxation of the rat superior mesenteric artery with the endothelium-dependent vasodilator acetylcholine is correlated to the endogeneous release of NO. The study also suggests that NO mediates the L-NOARG-resistant relaxations in this artery, and that there is a basal NO release.  (+info)

Angiotensin II-induced constrictions are masked by bovine retinal vessels. (6/1201)

PURPOSE: To unmask the vasoconstricting effect of angiotensin II (Ang II) on retinal smooth muscle by studying its interaction with endothelium-derived paracrine substances. This study focused specifically on determining the changes in vascular diameter and the release of endothelial-derived vasodilators, nitric oxide (NO) and prostaglandin (PG) I2, from isolated retinal microvessels. METHODS: Bovine retinal central artery and vein were cannulated, and arterioles and venules were perfused with oxygenated/heparinized physiological salt solution at 37 degrees C. This ex vivo perfused retinal microcirculation model was used to observe the contractile effects of Ang II on arterioles and venules of different diameters. The NO and PGI2 synthase inhibitors, 1-NOARG and flurbiprofen, respectively, were used to unmask Ang II vasoconstriction; the changes in vascular diameters were then measured. Enzyme immunoassays were used to measure the release of cGMP (an index of NO release) and 6-keto-PG-F1alpha (a stable metabolite of PGI2) from isolated bovine retinal vessels. RESULTS: Topically applied Ang II (10(-10) M to 10(-4) M) caused significant (P < 0.05) arteriolar and venular constrictions in a dose-dependent manner, with the smallest retinal arterioles (7+/-0.2 microm luminal diameter) and venules (12+/-2 microm luminal diameter) significantly more sensitive than larger vessels. After the inhibition of endogenous NO and PGI2 synthesis by 1-NOARG and flurbiprofen, respectively, the vasoconstriction effects of Ang II became more pronounced. Again, the smallest vessels tested were significantly more sensitive, and synthesis of endothelial-derived relaxing factor (EDRF), therefore, may be most important in these vessels. Vasoactive doses of Ang II (10(-10) M to 10(-4) M) caused a dose-dependent increase in the release of NO and PGI2 from isolated bovine retinal vessels, indicating that the increase in EDRF may nullify direct Ang II-induced vasoconstriction. Interestingly, intraluminal administration of Ang II caused only vasodilation. CONCLUSIONS: This study demonstrates that the retinal vascular endothelium acts as a buffer against the vasoconstricting agent Ang II via release of vasodilators NO and PGI2, and the vasoconstriction effects due to Ang II are most prominent in the smallest diameter vessels.  (+info)

Inhibition of NO synthesis or endothelium removal reveals a vasoconstrictor effect of insulin on isolated arterioles. (7/1201)

In this study we tested the hypothesis that insulin may differentially affect isolated arterioles from red (RGM) and white gastrocnemius muscles (WGM) because of their differences in function and metabolic profile. We also determined whether the responses of these arterioles are endothelium dependent and mediated by either prostaglandins or nitric oxide (NO). Arterioles were isolated, pressurized to 85 mmHg, equilibrated in Krebs bicarbonate-buffered solution (pH 7.4) gassed with 10% O2 (5% CO2-85% N2), and studied in a no-flow state. Control diameters for first-order arterioles from RGM averaged 77 +/- 8 micrometers and from WGM averaged 77 +/- 5 micrometers. Cumulative dose-response curves to insulin (10 microU/ml, 100 microU/ml, 1 mU/ml, and 10 mU/ml) were obtained in arterioles before and after endothelium removal or administration of either indomethacin (Indo, 10(-5) M) or NG-nitro-L-arginine (L-NNA, 10(-4) M). Insulin evoked concentration-dependent increases in control diameter of intact RGM and WGM arterioles of 6-26% and 9-28%, respectively. Indo was without any effect on insulin-induced dilation in RGM and WGM arterioles. Insulin-evoked dilation in both RGM and WGM arterioles was completely inhibited and converted to vasoconstriction by endothelium removal and administration of L-NNA. These results indicate that in endothelium-intact arterioles from RGM and WGM, insulin evokes an endothelium-dependent dilation that is equivalent and mediated by NO. In contrast, in the absence of a functional endothelium, insulin evokes arteriolar constriction. The finding that insulin can constrict arterioles, at physiological concentrations, suggests that insulin may play a more significant role in the regulation of vascular tone and total peripheral resistance than previously appreciated.  (+info)

Genetic control of renal thiazide receptor response to dietary NaCl and hypertension. (8/1201)

Excess NaCl increases blood pressure in some strains of animals but not others. An 8% NaCl diet did not change renal thiazide receptor (TZR) density in two salt-resistant normotensive rat strains (Wistar-Kyoto and Sprague-Dawley) [Fanestil, D. D., D. A. Vaughn, and P. Blakely. Am. J. Physiol. 273 (Regulatory Integrative Comp. Physiol. 42): R1241-R1245, 1997]. However, the renal response to salt differs in normal and hypertensive kidneys [Rettig, R., N. Bandelow, O. Patschan, B. Kuttler, B. Frey, and A. Uber. J. Hum. Hypertens. 10: 641-644, 1996]. Therefore, we examined two strains with salt-aggravated hypertension. Renal TZR did not change when Dahl-S (salt sensitive) animals became hypertensive with 8% dietary NaCl. In contrast, renal TZR decreased 34%, whereas blood pressure increased further, in SHR with 8% dietary NaCl. Blood pressure increased after NG-nitro-L-arginine in SHR, but renal TZR did not change, indicating the salt-induced decrease in TZR in SHR cannot be attributed nonspecifically to elevated arterial pressure. We conclude that the renal response to NaCl-induced increases in blood pressure can be genetically modulated independently of the genes that mediate either the primary hypertension or the salt sensitivity of the hypertension. This finding may be of use in future studies directed at identifying genotypes associated with salt-dependent hypertension.  (+info)