Murine leukocytes with ring-shaped nuclei include granulocytes, monocytes, and their precursors. (73/19639)

Leukocytes with ring-shaped nuclei (ring cells) are present in bone marrow (BM; approximately 50% of BM cells), in peripheral blood (PB), and in inflammatory infiltrates of mice, but also in humans during myeloproliferative disorders. They are usually referred to as polymorphonuclear cells (PMN), but we demonstrate that they additionally encompass different types of mononuclear (MNC)-like ring cells. PMN ring cells had constricted ring-shaped nuclei with a wide cytoplasmic center and were sorted among the GR-1high fraction. The MNC-like ring cells belonged to the GR-1low fraction. Their nuclei were not segmented and the cytoplasmic center of their nuclei was small. They were heterogeneous with one subgroup containing monocytes/macrophages according to ultrastructure, immunophenotype (BM8, F4/80, CD13, ER-HR3), activity of unspecific esterase, and phagocytosis of Leishmania major. A second subgroup contained myeloic precursor cells as they proliferated (Ki67), expressed ER-MP12, and showed on ultrastructure distribution patterns of peroxidase activity compatible with myelocytes, promyelocytes, or promonocytes. A third subgroup of cells had large, sometimes lobulated nuclei, was lineage marker(negative/low) (GR-1, Mac-1, B220 etc.), CD38-, but c-kit+ and sca-1+, and thus belonged to a close progeny of murine hematopoietic stem cells. In PB, ring cells encompassed mainly PMN, but also monocytes and cells with characteristics of both the granulocytic and monocytic lineage. Thus, ring cells comprise mature and precursor forms of myeloic cells. Their analysis revealed that in mice a clear distinction between the granulocytic and monocytic lineage beyond the GM-CFU stage is not always feasible.  (+info)

Regulation of early peritoneal neutrophil migration by macrophage inflammatory protein-2 and mast cells in experimental peritonitis. (74/19639)

Neutrophil (PMN) migration into the peritoneal cavity in response to fecal peritonitis is an important mechanism of host defense against bacterial invasion. We show that the murine C-X-C (PMN-specific) chemokine, macrophage inflammatory protein-2 (MIP-2), on intraperitoneal injection in mice, causes PMN migration into the peritoneum. MIP-2 mRNA and protein were expressed by peritoneal leukocytes after cecal ligation and puncture (CLP) in mice and neutralization of MIP-2 reduced peritoneal PMN migration. A prerequisite for neutrophil-endothelial adhesion and subsequent migration from the circulation is selectin-mediated rolling. Pretreatment of mice with an anti-P-selectin antibody before intraperitoneal injection of MIP-2 significantly reduced peritoneal PMN migration. However, there are no reports that a C-X-C chemokine can up-regulate endothelial selectins. We postulated that MIP-2, when injected intraperitoneally, interacts with a cell that is known to release factors that up-regulate endothelial selectins. A likely candidate is the mast cell, which contains histamine and tumor necrosis factor alpha (TNF-alpha), and both of these factors induce selectins. Intraperitoneally injected MIP-2 caused an early significant increase in peritoneal TNF-alpha, whereas histamine levels were unaffected. In a subsequent experiment, mast cell-deficient mice and their normal controls were then injected intraperitoneally with MIP-2 or underwent CLP. Significantly fewer PMNs migrated into the peritoneal cavity in the mast cell-deficient mice after MIP-2 injection or CLP. Thus, our findings indicate that mast cells and MIP-2 are necessary for PMN migration into the peritoneum in response to intra-abdominal infection, and that MIP-2 appears to facilitate this through an increase in TNF-alpha release.  (+info)

Influenza A virus accelerates neutrophil apoptosis and markedly potentiates apoptotic effects of bacteria. (75/19639)

Neutrophils are recruited into the airway in the early phase of uncomplicated influenza A virus (IAV) infection and during the bacterial superinfections that are a significant cause of morbidity and mortality in IAV-infected subjects. In this report, we show that IAV accelerates neutrophil apoptosis. Unopsonized Escherichia coli had similar effects, although apoptotic effects of opsonized E coli were greater. When neutrophils were treated with both IAV and unopsonized E coli, a marked enhancement of the rate and extent of neutrophil apoptosis occurred as compared with that caused by either pathogen alone. Treatment of neutrophils with IAV markedly increased phagocytosis of E coli. Simultaneous treatment of neutrophils with IAV and E coli also elicited greater hydrogen peroxide production than did either pathogen alone. IAV increased neutrophil expression of Fas antigen and Fas ligand, and it also increased release of Fas ligand into the cell supernatant. These findings may have relevance to the understanding of inflammatory responses to IAV in vivo and of bacterial superinfection of IAV-infected subjects.  (+info)

Early membrane rupture events during neutrophil-mediated antibody-dependent tumor cell cytolysis. (76/19639)

Although cell-mediated cytolysis is a fundamental immune effector response, its mechanism remains poorly understood at the cellular level. In this report, we image for the first time transient ruptures, as inferred by cytoplasmic marker release, in tumor cell membranes during Ab-dependent cellular cytolysis. The cytosol of IgG-opsonized YAC tumor cells was labeled with tetra-methylrhodamine diacetate followed by the formation of tumor cell-neutrophil conjugates. We hypothesized that tumor cell cytolysis proceeds via a series of discrete membrane rupture/resealing events that contribute to marker release. To test this hypothesis, we occluded the fluorescence image of the labeled tumor cells by passing an opaque disk into a field-conjugated plane between the light source and the sample. Multiple small bursts of fluorescent label release from tumor cells could be detected using a photomultiplier tube. Similarly, multiple fluorescent plumes were observed at various sites around the perimeter of a target. These findings support a multihit model of target cytolysis and suggest that cytolytic release is not focused at specific sites. Cytolytic bursts were generally observed at 20-s intervals, which match the previously described reduced nicotinamide-adenine dinucleotide phosphate and superoxide release oscillation periods for neutrophils; we speculate that metabolic oscillations of the effector cell drive the membrane damage of the target.  (+info)

Modulation of formyl peptide receptor expression by IL-10 in human monocytes and neutrophils. (77/19639)

IL-10, originally described as a cytokine synthesis inhibitory factor, is secreted by a number of cells of the immune system, including monocytes and T cells. Although IL-10 is being assigned as an immunosuppressive cytokine, our study showed that FMLP-R mRNA was rapidly up-regulated by exposure of monocytes to graded concentrations of this cytokine, with maximal (three- to fourfold) stimulation with 10 ng/ml. The effect was rapid, being observable as early as 1 h of treatment with IL-10, maximal between 2 and 4 h, and still evident after 24 h and was associated with an increase of receptor expression on the cell surface as assessed by flow cytometry analysis. Pretreatment of monocytes with actinomycin D completely abrogated the effect of IL-10, suggesting a transcriptional regulation. Moreover, IL-10-treated monocytes showed a significantly enhanced functional responsiveness to FMLP with enhanced (three- to fourfold) chemotaxis and augmented (twofold) intracellular calcium mobilization. In polymorphonuclear neutrophils (PMN), IL-10 also mediated a twofold augmentation of FMLP-R expression. In parallel experiments, we observed that IL-10 could differentially modulate other chemotactic receptors. Hence, we observed that IL-10 augmented two-to threefold platelet-activating factor receptor (PAF-R) expression, whereas it had no significant effect on the fifth component of complement (C5a) receptor (C5a-R) expression. Collectively, our results demonstrate that IL-10 may play an important role in inflammatory process through modulation of chemotactic receptor expression.  (+info)

Soluble Fas ligand is chemotactic for human neutrophilic polymorphonuclear leukocytes. (78/19639)

It has been recently shown that Fas ligand (FasL) expression on islet beta grafts results in neutrophilic infiltration and graft rejection. In this study, we show that human recombinant soluble FasL is endowed with potent chemotactic properties toward human neutrophilic polymorphonuclear leukocytes (neutrophils) at concentrations incapable of inducing cell apoptosis. Furthermore, neutrophils exposed to soluble FasL did not display detectable change of intracellular Ca2+ and did not undergo superoxide production or exocytosis of primary and secondary granules. Our results show that FasL is a potent chemoattractant for human neutrophils without evoking their secretory responses. This finding suggests a novel proinflammatory function for this ligand and may help to clarify the mechanism governing FasL-mediated graft rejection, thereby offering rational bases for controlling and modulating FasL-based immunotherapies.  (+info)

Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. (79/19639)

Phagocyte recognition, uptake, and nonphlogistic degradation of neutrophils and other leukocytes undergoing apoptosis promote the resolution of inflammation. This study assessed the effects of anti-inflammatory glucocorticoids on this leukocyte clearance mechanism. Pretreatment of "semimature" 5-day human monocyte-derived macrophages (M phi) for 24 h with methylprednisolone, dexamethasone, and hydrocortisone, but not the nonglucocorticoid steroids aldosterone, estradiol, and progesterone, potentiated phagocytosis of apoptotic neutrophils. These effects were specific in that the potentiated phagocytosis of apoptotic neutrophils was completely blocked by the glucocorticoid receptor antagonist RU38486, and glucocorticoids did not promote 5-day M phi ingestion of opsonized erythrocytes. Similar glucocorticoid-mediated potentiation was observed with 5-day M phi uptake of alternative apoptotic "targets" (eosinophils and Jurkat T cells) and in uptake of apoptotic neutrophils by alternative phagocytes (human glomerular mesangial cells and murine M phi elicited into the peritoneum or derived from bone marrow). Importantly, methylprednisolone-mediated enhancement of the uptake of apoptotic neutrophils did not trigger the release of the chemokines IL-8 and monocyte chemoattractant protein-1. Furthermore, longer-term potentiation by methylprednisolone was observed in maturing human monocyte-derived M phi, with greater increases in 5-day M phi uptake of apoptotic cells being observed the earlier glucocorticoids were added during monocyte maturation into M phi. We conclude that potentiation of nonphlogistic clearance of apoptotic leukocytes by phagocytes is a hitherto unrecognized property of glucocorticoids that has potential implications for therapies aimed at promoting the resolution of inflammatory diseases.  (+info)

Chemotaxin-dependent translocation of immunoreactive ADP-ribosyltransferase-1 to the surface of human neutrophil polymorphs. (80/19639)

mRNA from human polymorphonuclear neutrophil leucocytes (PMNs) was probed with cDNA encoding human skeletal muscle arginine-specific ADP-ribosyltransferase (ART1). A single 2.6-kb transcript was identified, which was similar in size to that observed in human skeletal muscle RNA. An 872-bp cDNA fragment, corresponding to the amino acid sequence of the processed human skeletal muscle enzyme, was generated by reverse transcription-PCR amplification of RNA from human PMNs, and was found to be identical to the ART1 cDNA derived from human skeletal muscle. ART1 was expressed as a fusion protein with glutathione S-transferase (GST) in insect cells, and antibodies were raised against the fusion protein in a rabbit. Following removal of GST immunoreactivity by immunoprecipitation, these antibodies were used to measure the abundance of immunoreactive ART1 on the surface of PMNs. Exposure of PMNs to formyl-Met-Leu-Phe (FMLP) was followed by a rapid increase in the abundance of cell surface ART1 (T1/2 = 1.9 min), and the concentration of FMLP for half-maximum response was 28.6 nM. Similar responses were observed after exposure of the cells to platelet-activating factor or interleukin-8, and we conclude that some of the effects of these chemotaxins are mediated by translocation of an intracellular pool of ART1 to its site of catalytic activity on the outer aspect of the plasma membrane.  (+info)