Food intake and reward mechanisms in patients with schizophrenia: implications for metabolic disturbances and treatment with second-generation antipsychotic agents. (49/223)

Obesity is highly prevalent among patients with schizophrenia and is associated with detrimental health consequences. Although excessive consumption of fast food and pharmacotherapy with such second-generation antipsychotic agents (SGAs) as clozapine and olanzapine has been implicated in the schizophrenia/obesity comorbidity, the pathophysiology of this link remains unclear. Here, we propose a mechanism based on brain reward function, a relevant etiologic factor in both schizophrenia and overeating. A comprehensive literature search on neurobiology of schizophrenia and of eating behavior was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) energy homeostasis, (2) food reward and hedonics, (3) reward function in schizophrenia, and (4) metabolic effects of the SGAs. A mesolimbic hyperdopaminergic state may render motivational/incentive reward system insensitive to low salience/palatability food. This, together with poor cognitive control from hypofunctional prefrontal cortex and enhanced hedonic impact of food, owing to exaggerated opioidergic drive (clinically manifested as pain insensitivity), may underlie unhealthy eating habits in patients with schizophrenia. Treatment with SGAs purportedly improves dopamine-mediated reward aspects, but at the cost of increased appetite and worsened or at least not improved opiodergic capacity. These effects can further deteriorate eating patterns. Pathophysiological and therapeutic implications of these insights need further validation via prospective clinical trials and neuroimaging studies.  (+info)

NFkappaB in neurons? The uncertainty principle in neurobiology. (50/223)

Nuclear factor kappaB (NFkappaB) is a dynamically modulated transcription factor with an extensive literature pertaining to widespread actions across species, cell types and developmental stages. Analysis of NFkappaB in a complex environment such as neural tissue suffers from a difficulty in simultaneously establishing both activity and location. Much of the available data indicate a profound recalcitrance of NFkappaB activation in neurons, as compared with most other cell types. Few studies to date have sought to distinguish between the various combinatorial dimers of NFkappaB family members. Recent research has illuminated the importance of these problems, as well as opportunities to move past them to the nuances manifest through variable activation pathways, subunit complexity and target sequence preferences.  (+info)

LONI visualization environment. (51/223)

Over the past decade, the use of informatics to solve complex neuroscientific problems has increased dramatically. Many of these research endeavors involve examining large amounts of imaging, behavioral, genetic, neurobiological, and neuropsychiatric data. Superimposing, processing, visualizing, or interpreting such a complex cohort of datasets frequently becomes a challenge. We developed a new software environment that allows investigators to integrate multimodal imaging data, hierarchical brain ontology systems, on-line genetic and phylogenic databases, and 3D virtual data reconstruction models. The Laboratory of Neuro Imaging visualization environment (LONI Viz) consists of the following components: a sectional viewer for imaging data, an interactive 3D display for surface and volume rendering of imaging data, a brain ontology viewer, and an external database query system. The synchronization of all components according to stereotaxic coordinates, region name, hierarchical ontology, and genetic labels is achieved via a comprehensive BrainMapper functionality, which directly maps between position, structure name, database, and functional connectivity information. This environment is freely available, portable, and extensible, and may prove very useful for neurobiologists, neurogenetisists, brain mappers, and for other clinical, pedagogical, and research endeavors.  (+info)

ADHD in adolescence and adulthood, with a special focus on the dopamine transporter and nicotine. (52/223)

The persistence of attention deficit hyperactivity disorder (ADHD) into adolescence and adulthood has now been accepted as a clinical entity. The rate of prevalence among adults is assumed to be from 2% to 4%. With increasing age, a symptom change has to be considered; disturbance of attention becomes more prominent, whereas hyperactivity often diminishes or changes to inactivity. Neuroimaging studies show a high striatal dopamine transporter (DAT) availability in most adults with ADHD; this can be reduced by stimulants. Nicotine seems to have a stimulant-like action on the DAT. In most adults with ADHD, therapy has to be multimodal, combining psychotherapy and medication. Methylphenidate is the first-line drug in adult ADHD; further options are amphetamine and noradrenaline reuptake inhibitors. Nonresponders to methylphenidate seem to have no elevated DAT availability prior to therapy. Combination with other psychiatric disorders occurs frequently in adults with ADHD; in these patients additional pharmacological treatment with special regard to the comorbid disease is recommended.  (+info)

VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. (53/223)

Currently available therapeutic interventions for treatment-resistant depression, including switch, combination, and augmentation strategies, are less than ideal. Observations of mood elevation during vagus nerve stimulation (VNS) therapy for pharmacoresistant epilepsy suggested a role for VNS therapy in refractory major depression and prompted clinical investigation of this neurostimulation modality. The VNS Therapy System has been available for treatment of pharmacoresistant epilepsy since 1997 and was approved by the US Food and Drug Administration for treatment-resistant depression in July, 2005. The physiology of the vagus nerve, mechanics of the VNS Therapy System, and efficacy and safety in pharmacoresistant epilepsy are reviewed. Promising results of VNS therapy for treatment-resistant depression have been forthcoming from both acute and long-term studies, evidenced in part by progressive improvements in depression rating scale scores during the 1st year of treatment with maintenance of response thereafter. VNS therapy is well tolerated in patients with either pharmacoresistant epilepsy or treatment-resistant depression. As in epilepsy, the mechanisms of VNS therapy of treatment-resistant depression are incompletely understood. However, evidence from neuroimaging and other studies suggests that VNS therapy acts via innervation of the nucleus tractus solitarius, with secondary projections to limbic and cortical structures that are involved in mood regulation, including brainstem regions that contain serotonergic (raphe nucleus) and noradrenergic (locus ceruleus) perikarya that project to the forebrain. Mechanisms that mediate the beneficial effects of VNS therapy for treatment-resistant depression remain obscure. Suggestions for future research directions are described.  (+info)

Genetic analysis of early neurogenesis: dedicated to the scientific contributions of Jose A. Campos-Ortega (1940-2004). (54/223)

Jose Campos-Ortega stands out as one of the pioneers of developmental-genetic studies of early neurogenesis. He also liked to reflect about the history of science: how one discovery leads to the next, and what role individuals play in the progress of science. He had indeed started to work on a book describing the history of developmental genetics during the last year of his life. His goal in this book was to "explain how developmental genetics originated, how it transformed developmental biology and, while doing so, how it contributed to achieve the biological synthesis." In the following, I would like to reflect on the origin and growth of the field Campos-Ortega contributed so much. In doing so, it is of particular interest to consider his scientific roots, and the manner in which he entered the stage of developmental genetics. I believe that Campos-Ortega's unusual scientific background influenced in an important manner the way in which he shaped the study of early neurogenesis.  (+info)

A century of progress in corticoneurogenesis: from silver impregnation to genetic engineering. (55/223)

Within the past 125 years, we have witnessed great strides in understanding development and evolution of the cerebral cortex, arguably the structure that makes us human. Among the distinguishing features of cortical development are discoveries that its constituent neurons are not generated locally and that after assuming their proper areal, radial, and laminar position, they serve the individual throughout the lifespan. Although the basic cellular events and all major developmental phenomena have been discovered by the use of classical methods, advents of new, evermore sophisticated experimental methods that range from neuroimaging to molecular genetics enable elucidation of the molecular and cellular mechanisms underlying evolutionary elaboration of the cortex and opens the possibility for the prevention and treatment of congenital disorders of the highest cognitive functions in humans.  (+info)

Economic, neurobiological, and behavioral perspectives on building America's future workforce. (56/223)

A growing proportion of the U.S. workforce will have been raised in disadvantaged environments that are associated with relatively high proportions of individuals with diminished cognitive and social skills. A cross-disciplinary examination of research in economics, developmental psychology, and neurobiology reveals a striking convergence on a set of common principles that account for the potent effects of early environment on the capacity for human skill development. Central to these principles are the findings that early experiences have a uniquely powerful influence on the development of cognitive and social skills and on brain architecture and neurochemistry, that both skill development and brain maturation are hierarchical processes in which higher level functions depend on, and build on, lower level functions, and that the capacity for change in the foundations of human skill development and neural circuitry is highest earlier in life and decreases over time. These findings lead to the conclusion that the most efficient strategy for strengthening the future workforce, both economically and neurobiologically, and improving its quality of life is to invest in the environments of disadvantaged children during the early childhood years.  (+info)