Hepatic storage of glycosaminoglycans in feline and canine models of mucopolysaccharidoses I, VI, and VII. (41/91)

Livers from normal cats and dogs, cats with mucopolysaccharidoses (MPS) I and VI, and dogs with MPS VII were analyzed biochemically and morphometrically to determine the lysosomal storage of glycosaminoglycans (GAG) in these animal models of human genetic disease. Analyses were performed on liver samples from seven normal cats ranging in age from 13 weeks to 15 months; six MPS I-affected cats ranging in age from 10 weeks to 26 months; four MPS VI-affected cats ranging in age from 9 months to 32 months; four normal dogs ranging in age from 1 month to 47 months; and three MPS VII-affected dogs, 5 days, 11 days, and 14 months of age. All of the animals were from the breeding colony at the University of Pennsylvania School of Veterinary Medicine and were maintained in accordance with national standards for the care and use of laboratory animals. Each GAG subclass was quantitated, and total GAG concentration was determined. Liver from cats with MPS I had the highest total GAG concentration (5.7 times that of the control), followed by liver from dogs with MPS VII (1.8 times) and cats with MPS VI (1.5 times). These data were very closely correlated (R2 = 0.982) with the results of the morphometric analyses of hepatocyte and Kupffer cell vacuolation associated with lysosomal storage and support the validity of both methods. This is particularly important for the quantification of total and individual GAG concentrations in tissue preparations. The values obtained should prove useful in future assessments of therapeutic regimes, such as enzyme replacement, bone marrow transplantation, and gene therapy, for these genetic diseases.  (+info)

Encapsulation cell therapy for mucopolysaccharidosis type VII using genetically engineered immortalized human amniotic epithelial cells. (42/91)

Mucopolysaccharidosis type VII (MPSVII) is a lysosomal storage disease resulted from a deficiency of the enzyme beta-glucuronidase (GUSB), which is necessary for degradation of glycosaminoglycans (GAGs). The deficiency of GUSB causes progressive accumulation of GAGs and subsequent lysosomal distension in multiple tissues, including the central nervous system (CNS). In murine experiments, bone marrow transplant, enzyme replacement, viral vectors, and genetically modified cells were successfully used for correction of the visceral accumulation of GAGs, but little improvement was seen in the brain, because these therapeutic agents cannot cross the blood-brain barrier (BBB). Although direct intracerebral injection of GUSB-encoding viral vectors has been developed to bypass the BBB, the possibility of tumor formation and the toxicity of over-expressed GUSB have been reported. In this study, we generated immortalized human amniotic epithelial (IHAE) cells to maintain the effect of implantation, and encapsulated these cells to prevent harmful immunological response and tumor formation and to regulate the level of GUSB expression within the host. Moreover, we generated IHAE cells that over-express and secrete human GUSB following transduction with an adenoviral vector encoding human GUSB. Therapeutic efficacy for MPSVII was evaluated in and ex vivo experiments using these encapsulated genetically engineered GUSB-encoding IHAE cells. We confirmed that encapsulated genetically engineered IHAE cells could secrete significant amounts of GUSB outside the capsule in vitro and into the cerebral parenchyma of C3H mice seven days after the capsule implantation. Thus, encapsulation cell therapy using genetically engineered IHAE cells is an effective armamentarium for the treatment of MPSVII.  (+info)

Enzyme therapy in mannose receptor-null mucopolysaccharidosis VII mice defines roles for the mannose 6-phosphate and mannose receptors. (43/91)

Enzyme replacement therapy (ERT) is available for several lysosomal storage diseases. Except for Gaucher disease, for which an enzyme with exposed mannosyl residues targets mannose receptors (MR) on macrophages, ERT targets primarily the mannose 6-phosphate receptor (MPR). Most recombinant lysosomal enzymes contain oligosaccharides with both terminal mannosyl and mannose 6-phosphate residues. Effective MPR-mediated delivery may be compromised by rapid clearance of infused enzyme by the MR on fixed tissue macrophages, especially Kupffer cells. To evaluate the impact of this obstacle to ERT, we introduced the MR-null mutation onto the mucopolysaccharidosis type VII (MPS VII) background and produced doubly deficient MR-/- MPS VII mice. The availability of both MR+/+ and MR-/- mice allowed us to study the effects of eliminating the MR on MR- and MPR-mediated plasma clearance and tissue distribution of infused phosphorylated (P) and nonphosphorylated (NP) forms of human beta-glucuronidase (GUS). In MR+/+ MPS VII mice, the MR clearance system predominated at doses up to 6.4 mg/kg P-GUS. Genetically eliminating the MR slowed plasma clearance of both P- and NP-GUS and enhanced the effectiveness of P-GUS in clearing storage in kidney, bone, and retina. Saturating the MR clearance system by high doses of enzyme also improved targeting to MPR-containing tissues such as muscle, kidney, heart, and hepatocytes. Although ablating the MR clearance system genetically is not practical clinically, blocking the MR-mediated clearance system with high doses of enzyme is feasible. This approach delivers a larger fraction of enzyme to MPR-expressing tissues, thus enhancing the effectiveness of MPR-targeted ERT.  (+info)

Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity. (44/91)

Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of preclinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII mice, we characterized the distribution of lineage-depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase (ALDH) activity with CD133 coexpression. ALDH(hi) or ALDH(hi)CD133+ cells produced robust hematopoietic reconstitution and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that coexpressed human leukocyte antigen (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels and CD45-/HLA- cells with diluted GUSB expression predominant in the liver parenchyma. However, true nonhematopoietic human (HLA+/CD45-) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA-/CD45- cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of nonhematopoietic cells. However, relying solely on continued expression of cell surface markers, as used in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage.  (+info)

Chemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. (45/91)

 (+info)

Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. (46/91)

 (+info)

Infused Fc-tagged beta-glucuronidase crosses the placenta and produces clearance of storage in utero in mucopolysaccharidosis VII mice. (47/91)

 (+info)

Transplantation and magnetic resonance imaging of canine neural progenitor cell grafts in the postnatal dog brain. (48/91)

 (+info)