MENTAL RETARDATION: METHODS OF DIAGNOSIS AND SOME RECENTLY DESCRIBED SYNDROMES. (17/191)

Reduction of intelligence should be differentiated from interference with the use of intelligence by such non-intellective factors as partial deafness and emotional disturbance. The parents of a retarded child want an assessment, a prediction of the eventual achievement level, and a causal explanation if possible. There are varying degrees of knowledge of causation, from recognition of reduced intelligence only, to an understanding of the mechanism of causation in considerable detail from primary cause to ultimate consequence, as in phenylketonuria or isoimmunization. A diagnosis should be as complete as possible, using available modern techniques of investigation, such as chromatography and cytogenetic studies.AMONG THE RECENTLY DESCRIBED SYNDROMES ASSOCIATED WITH MENTAL RETARDATION ARE: (1) spastic paralysis and congenital ichthyosis; (2) Rud's syndrome; (3) deaf-mutism, infantilism, ataxia and a disturbance of hormone metabolism; and (5) sex-linked deaf-mutism.  (+info)

METABOLISM OF ACID MUCOPOLYSACCHARIDES. (18/191)

The biosynthesis of the acid mucopolysaccharides, hyaluronic acid and chondroitin sulfuric acid, occurs by way of uridine nucleotides which contain the monosaccharide units of the respective polysaccharides. The mechanism of alternation of groups is as yet unknown. Certain of the acid mucopolysaccharides are covalently bound to protein by way of serine. In the case of the protein-polysaccharide complex of cartilage, there is evidence to suggest that the polysaccharide may be linked to the serine by way of galactose. Chondroitin sulfuric acid B may be isolated almost free of amino acids from the tissues and urine of patients with the Hurler syndrome without the use of proteolytic enzymes, acid, or alkali. This contrasts markedly with the tight binding of this compound to protein in normal tissue. It is suggested that the metabolic defect in this disease may reside in a defect of the peptide or linkage of the peptide to polysaccharide resulting in failure of the acid mucopolysaccharide to be fixed normally in connective tissue. Such a defect may result in interference with normal regulation of polysaccharide synthesis with a resultant increased synthesis. It is proposed that such a mechanism may obtain in other heritable connective tissue diseases as well as other storage diseases.  (+info)

The alpha-L-iduronidase mutations R89Q and R89W result in an attenuated mucopolysaccharidosis type I clinical presentation. (19/191)

Mucopolysaccharidosis type I (MPS I; McKusick 25280; Hurler syndrome, Hurler-Scheie syndrome and Scheie syndrome) is caused by a deficiency in the lysosomal hydrolase, alpha-L-iduronidase (EC 3.2.1.76). MPS I patients present within a clinical spectrum bounded by the extremes of Hurler and Scheie syndromes. The alpha-L-iduronidase missense mutations R89Q and R89W were investigated and altered an important arginine residue proposed to be a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. The R89Q alpha-L-iduronidase mutation was shown to result in a reduced level of alpha-L-iduronidase protein (< or =10% of normal control) compared to a normal control level of alpha-L-iduronidase protein that was detected for the R89W alpha-L-iduronidase mutation. When taking into account alpha-L-iduronidase specific activity, the R89W mutation had a greater effect on alpha-L-iduronidase activity than the R89Q mutation. However, overall the R89W mutation produced more residual alpha-L-iduronidase activity than the R89Q mutation. This was consistent with MPS I patients, with an R89W allele, having a less severe clinical presentation compared to MPS I patients with either a double or single allelic R89Q mutation. The effects of the R89Q and R89W mutations on enzyme activity supported the proposed role of R89 as a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase.  (+info)

Retrovirally mediated overexpression of versican v3 reverses impaired elastogenesis and heightened proliferation exhibited by fibroblasts from Costello syndrome and Hurler disease patients. (20/191)

The phenotypic resemblance of patients with Costello syndrome and Hurler disease has been linked to impaired formation of elastic fibers that coincides with elevated cellular proliferation. Impaired elastogenesis in these diseases associates with respective abnormal accumulation of chondroitin sulfate and dermatan sulfate proteoglycans that induce cell surface shedding of elastin-binding protein (EBP) normally required for intracellular chaperoning of tropoelastin and its assembly into elastic fibers. A variant of the chondroitin sulfate proteoglycan versican, V3, which lacks chondroitin sulfate, has recently been shown to stimulate elastic fiber assembly and decrease proliferation when expressed by retroviral transduction in arterial smooth muscle cells. However, the mechanism(s) by which V3 influences this phenotype is not known. We now demonstrate that transduction of skin fibroblasts from Costello syndrome and Hurler disease patients with cDNA to versican V3 completely reverses impaired elastogenesis and restores normal proliferation of these cells. This phenotypic reversal is accompanied by loss of chondroitin sulfate from the cell surface and increased levels of EBP. Versican V3 transduction of skin fibroblasts from GM(1)-gangliosidosis patients, which lack EBP, failed to restore impaired elastogenesis. These results suggest that induction of elastic fiber production by gene transfer of versican V3 in skin fibroblasts is mediated by rescue of the tropoelastin chaperone, EBP.  (+info)

Successful induction of immune tolerance to enzyme replacement therapy in canine mucopolysaccharidosis I. (21/191)

Immune responses can interfere with the effective use of therapeutic proteins to treat genetic deficiencies and have been challenging to manage. To address this problem, we adapted and studied methods of immune tolerance used in canine organ transplantation research to soluble protein therapeutics. A tolerization regimen was developed that prevents a strong antibody response to the enzyme alpha-l-iduronidase during enzyme replacement therapy of a canine model of the lysosomal storage disorder mucopolysaccharidosis I. The tolerizing regimen consists of a limited 60-day course of cyclosporin A and azathioprine combined with weekly i.v. infusions of low-dose recombinant human alpha-l-iduronidase. The canines tolerized with this regimen maintain a reduced immune response for up to 6 months despite weekly therapeutic doses of enzyme in the absence of immunosuppressive drugs. Successful tolerization depended on high plasma levels of cyclosporin A combined with azathioprine. In addition, the induction of tolerance may require mannose 6-phosphate receptor-mediated uptake because alpha-l-iduronidase and alpha-glucosidase induced tolerance with the drug regimen whereas ovalbumin and dephosphorylated alpha-l-iduronidase did not. This tolerization method should be applicable to the treatment of other lysosomal storage disorders and provides a strategy to consider for other nontoleragenic therapeutic proteins and autoimmune diseases.  (+info)

Glycosaminoglycan degradation fragments in mucopolysaccharidosis I. (22/191)

The catabolism of glycosaminoglycans begins with endohydrolysis of polysaccharides to oligosaccharides followed by the sequential action of an array of exoenzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In a lysosomal storage disorder known as mucopolysaccharidosis I, caused by a deficiency of the exohydrolase alpha-l-iduronidase, fragments of two different glycosaminoglycans, dermatan sulfate and heparan sulfate, have been shown to accumulate. Oligosaccharides isolated from the urine of a mucopolysaccharidosis I patient using anion exchange and gel filtration chromatography were identified as di-, tri-, tetra-, penta-, and hexasaccharides using electrospray ionization-tandem mass spectrometry and shown to have nonreducing terminal alpha-l-iduronate residues, susceptible to digestion with alpha-l-iduronidase. The presence of odd and even oligosaccharides suggests both endo-beta-glucuronidase and endo-N-acetylhexosaminidase activities toward both glycosaminoglycans. Cultured skin fibroblasts from mucopolysaccharidosis I patients accumulate the same dermatan sulfate-and heparan sulfate-derived di- and trisaccharides as identified in urine, and supplementation of culture medium with recombinant alpha-l-iduronidase reduced their level to that of unaffected control fibroblasts. A dermatan-derived tetrasaccharide not elevated in mucopolysaccharidosis I fibroblasts transiently increased in these fibroblasts in the presence of recombinant alpha-l-iduronidase, indicating it is an intermediate product of catabolism. These oligosaccharides were elevated in urine samples from mucopolysaccharidosis I patients, and we suggest that these glycosaminoglycan-derived oligosaccharides may be useful biochemical markers for the identification and the clinical management of mucopolysaccharidosis I patients.  (+info)

Cord-blood transplants from unrelated donors in patients with Hurler's syndrome. (23/191)

BACKGROUND: Hurler's syndrome (the most severe form of mucopolysaccharidosis type I) causes progressive deterioration of the central nervous system and death in childhood. Allogeneic bone marrow transplantation before the age of two years halts disease progression and prolongs life, but many children lack a bone marrow donor. We investigated the feasibility of using cord-blood transplants from unrelated donors and a myeloablative preparative regimen that did not involve total-body irradiation in young children with Hurler's syndrome. METHODS: Between December 1995 and October 2002, 20 consecutive children with Hurler's syndrome received busulfan, cyclophosphamide, and antithymocyte globulin before receiving cord-blood transplants from unrelated donors. The children were subsequently evaluated for engraftment, adverse effects, and effects on disease symptoms. RESULTS: Cord-blood donors had normal alpha-L-iduronidase activity (mean number of cells, 10.53x10(7) per kilogram of body weight) and were discordant for up to three of six HLA markers. Neutrophil engraftment occurred a median of 24 days after transplantation. Five patients had grade II or grade III acute graft-versus-host disease; none had extensive chronic graft-versus-host disease. Seventeen of the 20 children were alive a median of 905 days after transplantation, with complete donor chimerism and normal peripheral-blood alpha-L-iduronidase activity (event-free survival rate, 85 percent). Transplantation improved neurocognitive performance and decreased somatic features of Hurler's syndrome. CONCLUSIONS: Cord blood from unrelated donors appears to be an excellent source of stem cells for transplantation in patients with Hurler's syndrome. Sustained engraftment can be achieved without total-body irradiation. Cord-blood transplantation favorably altered the natural history of Hurler's syndrome and thus may be important to consider in young children with this form of the disease.  (+info)

Immunoquantification and enzyme kinetics of alpha-L-iduronidase in cultured fibroblasts from normal controls and mucopolysaccharidosis type I patients. (24/191)

alpha-L-Iduronidase activity is deficient in mucopolysaccharidosis type I (MPS I; Hurler syndrome, Scheie syndrome) patients and results in the disruption of the sequential degradation of the glycosaminoglycans dermatan sulfate and heparan sulfate. A monoclonal antibody-based immunoquantification assay has been developed for alpha-L-iduronidase, which enables the detection of at least 16 pg alpha-L-iduronidase protein. Cultured human skin fibroblasts from 12 normal controls contained 17-54 ng alpha-L-iduronidase protein/mg extracted cell protein. Fibroblasts from 23 MPS I patients were assayed for alpha-L-iduronidase protein content. Fibroblast extracts from one MPS I patient contained at least six times the level of alpha-L-iduronidase protein for normal controls--but contained no associated enzyme activity--and is proposed to represent a mutation affecting the active site of the enzyme. Fibroblast extracts from 11 MPS I patients contained 0.05-2.03 ng alpha-L-iduronidase protein/mg extracted cell protein, whereas immunodetectable protein could not be detected in the other 11 patients. Four fibroblast extracts with no immunodetectable alpha-L-iduronidase protein had residual alpha-L-iduronidase activity, suggesting that the mutant alpha-L-iduronidase in cultured cells from these MPS I patients has been modified to mask or remove the epitopes detected by two monoclonal antibodies used in the quantification assay. Both the absence of immunoreactivity in a mild MPS I patient and high protein level in a severe MPS I patient present limitations to the use of immunoquantification analysis as a sole measure of patient phenotype. Enzyme kinetic analysis of alpha-L-iduronidase from MPS I fibroblasts revealed a number of patients with either abnormal substrate binding or catalytic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)