Fluid dynamic design of lobster olfactory organs: high speed kinematic analysis of antennule flicking by Panulirus argus. (9/591)

Many organisms use olfactory appendages bearing arrays of microscopic hairs to pick up chemical signals from the surrounding water or air. We report a morphometric and high speed kinematic analysis of the olfactory organs (lateral flagella of the antennules, which bear chemosensory aesthetasc hairs) of the spiny lobster, Panulirus argus. Panulirus argus sample specific locations by executing a rapid series of antennule flicks at one position, moving the antennule to a different spot and then performing another series of flicks. Odorant delivery to an aesthetasc depends on the water motion near it, which depends on its Reynolds number (Re, proportional to both the diameter and speed of the hair). High speed video enabled us to resolve that during a series of flicks, an antennule moves down rapidly (aesthetasc Re = 2) and up more slowly (Re = 0.5), pausing briefly ( approximately 0.54 s) before the next downstroke. The antennules of P. argus operate in a range of Re values and inter-aesthetasc spacings in which penetration of fluid between the hairs in an array is especially sensitive to changes in speed. Therefore, when antennules flick 'old' water is flushed out of the aesthetasc array during the leaky downstroke and is not picked up again during the less leaky upstroke, hence the antennules can take discrete samples. Thus, by operating in this critical Re range these antennules should be particularly effective at sniffing.  (+info)

Hydrodynamic trail-following in harbor seals (Phoca vitulina). (10/591)

Marine mammals often forage in dark or turbid waters. Whereas dolphins use echolocation under such conditions, pinnipeds apparently lack this sensory ability. For seals hunting in the dark, one source of sensory information may consist of fish-generated water movements, which seals can detect with their highly sensitive whiskers. Water movements in the wake of fishes persist for several minutes. Here we show that blindfolded seals can use their whiskers to detect and accurately follow hydrodynamic trails generated by a miniature submarine. This shows that hydrodynamic information can be used for long-distance prey location.  (+info)

Acting on an environmental health disaster: the case of the Aral Sea. (11/591)

The Aral Sea area in Central Asia has been encountering one of the world's greatest environmental disasters for more than 15 years. During that time, despite many assessments and millions of dollars spent by large, multinational organizations, little has changed. The 5 million people living in this neglected and virtually unknown part of the world are suffering not only from an environmental catastrophe that has no easy solutions but also from a litany of health problems. The region is often dismissed as a chronic problem where nothing positive can be achieved. Within this complicated context, Medecins Sans Frontieres, winner of the Nobel Peace Prize in 1999, is actively trying to assess the impact of the environmental disaster on human health to help the people who live in the Aral Sea area cope with their environment. Medecins Sans Frontieres has combined a direct medical program to improve the health of the population while conducting operational research to gain a better understanding of the relationship between the environmental disaster and human health outcomes. In this paper we explore the health situation of the region and the broader policy context in which it is situated, and present some ideas that could potentially be applied to many other places in the world that are caught up in environmental and human health disasters.  (+info)

Signaling via water currents in behavioral interactions of snapping shrimp (Alpheus heterochaelis). (12/591)

The snappping shrimp Alpheus heterochaelis produces a variety of different water currents during intraspecific encounters and interspecific interactions with small sympatric crabs (Eurypanopeus depressus). We studied the mechanisms of current production in tethered shrimp and the use of the different currents in freely behaving animals. The beating of the pleopods results in strong posteriorly directed currents. Although they reach rather far, these currents show no distinctions when directed toward different opponents. Gill currents are produced by movements of the scaphognathites (the exopodites of the second maxillae) and can then be deflected laterally by movements of the exopodites of the first and second maxillipeds. These frequent but slow lateral gill currents are most probably used to enhance chemical odor perception. The fast and focused, anteriorly directed gill currents, however, represent a powerful tool in intraspecific signaling, because they reach the chemo- and mechanosensory antennules of the opponent more often than any other currents and also because they are produced soon after previous contacts between the animals. They may carry chemical information about the social status of their producers since dominant shrimp release more anterior gill currents and more water jets than subordinate animals in intrasexual interactions.  (+info)

Biogeography of Asterias: North Atlantic climate change and speciation. (13/591)

Fossil evidence suggests that the seastar genus Asterias arrived in the North Atlantic during the trans-Arctic interchange around 3.5 Ma. Previous genetic and morphological studies of the two species found in the Atlantic today suggested two possible scenarios for the speciation of A. rubens and A. forbesi. Through phylogenetic and population genetic analysis of data from a portion of the cytochrome oxidase I mitochondrial gene and a fragment of the ribosomal internal transcribed spacer region, I show that the formation of the Labrador Current 3.0 Ma was probably responsible for the initial vicariance of North Atlantic Asterias populations. Subsequent adaptive evolution in A. forbesi was then possible in isolation from the European species A. rubens. The contact zone between these two species formed recently, possibly due to a Holocene founding event of A. rubens in New England and the Canadian Maritimes.  (+info)

Running in the surf: hydrodynamics of the shore crab Grapsus tenuicrustatus. (14/591)

When locomoting in water, animals experience hydrodynamic forces due to ambient water motion and their own motion through the water. Because an aquatic pedestrian must maintain contact with the substratum to locomote, hydrodynamic forces which can dislodge an animal have the capacity to constrain the postures, gaits and speeds an animal can use. This study measured hydrodynamic forces on the amphibious shore crab Grapsus tenuicrustatus in aquatic and terrestrial postures. The crabs' locomotory speeds and ambient water velocities in their habitat were considered in predicting the conditions under which a crab is likely to overturn or wash away. A non-moving crab can withstand 200% faster flow in the aquatic posture than in the terrestrial posture. A crab using the terrestrial posture while locomoting through still water experiences 132% greater drag and 17% greater acceleration reaction forces than it does in the aquatic posture. Due to the lower hydrodynamic forces in the aquatic posture, a crab could locomote up to 50% more quickly or through a faster water flow environment than it could in the terrestrial posture. In faster flow environments like wave-swept rocky shores, a crab in either posture would have to actively grasp the substratum to keep from being dislodged, preventing it from using a punting gait. In slower flow environments, animals can locomote faster and take advantage of different gaits that are not available to them in faster flow environments.  (+info)

Precise tuning of barnacle leg length to coastal wave action. (15/591)

Both spatial and temporal variation in environmental conditions can favour intraspecific plasticity in animal form. But how precise is such environmental modulation? Individual Balanus glandula Darwin, a common northeastern Pacific barnacle, produce longer feeding legs in still water than in moving water. We report here that, on the west coast of Vancouver Island, Canada, the magnitude and the precision of this phenotypic variation is impressive. First, the feeding legs of barnacles from protected bays were nearly twice as long (for the same body mass) as those from open ocean shores. Second, leg length varied surprisingly precisely with wave exposure: the average maximum velocities of breaking waves recorded in situ explained 95.6-99.5% of the variation in average leg length observed over a threefold range of wave exposure. The decline in leg length with increasing wave action was less than predicted due to simple scaling, perhaps due to changes in leg shape or material properties. Nonetheless, the precision of this relationship reveals a remarkably close coupling between growth environment and adult form, and suggests that between-population differences in barnacle leg length may be used for estimating differences in average wave exposure easily and accurately in studies of coastal ecology.  (+info)

Lobster sniffing: antennule design and hydrodynamic filtering of information in an odor plume. (16/591)

The first step in processing olfactory information, before neural filtering, is the physical capture of odor molecules from the surrounding fluid. Many animals capture odors from turbulent water currents or wind using antennae that bear chemosensory hairs. We used planar laser-induced fluorescence to reveal how lobster olfactory antennules hydrodynamically alter the spatiotemporal patterns of concentration in turbulent odor plumes. As antennules flick, water penetrates their chemosensory hair array during the fast downstroke, carrying fine-scale patterns of concentration into the receptor area. This spatial pattern, blurred by flow along the antennule during the downstroke, is retained during the slower return stroke and is not shed until the next flick.  (+info)