Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. (1/96)

Centrosome duplication is indispensable for the formation of the bipolar mitotic spindle. Surprisingly, even if DNA replication or mitosis is inhibited, centrosome duplication can still occur [1] [2] [3] [4] [5]. Thus, it remains unknown how centrosome duplication is coordinated with the cell cycle. Here, we show that centrosome duplication requires cyclin-dependent kinase 2 (Cdk2) in mammalian cells. We have found that in Chinese hamster ovary (CHO) cells, whereas centrosome duplication is not inhibited by hydroxyurea (HU) treatment, which arrests the cells in S phase, it is inhibited by mimosine treatment, which arrests the cells in late G1 phase. Cdk2 activity was higher in HU-treated cells than in mimosine-treated cells. Remarkably, inhibition of the Cdk2 activity in HU-treated cells with butyrolactone I or roscovitine [6], or by expression of the Cdk inhibitor p21(Waf1/Cip1), blocked the continued centrosome duplication. Moreover, overexpression of Cdk2 reversed the inhibition of centrosome duplication by mimosine treatment. These results indicate a requirement of Cdk2 activity for centrosome duplication and therefore suggest an underlying mechanism for the coordination of centrosome duplication with the cell cycle.  (+info)

Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. (2/96)

cdc25C induces mitosis by activating the cdc2-cyclin B complex. The intracellular localization of cyclin B1 is regulated in a cell cycle-specific manner, and its entry into the nucleus may be required for the initiation of mitosis. To determine the cellular localization of cdc25C, monoclonal antibodies specific for cdc25C were developed and used to demonstrate that in human cells, cdc25C is retained in the cytoplasm during interphase. A deletion analysis identified a 58-amino-acid region (amino acids 201 to 258) in cdc25C that was required for the cytoplasmic localization of cdc25C. This region contained a specific binding site for 14-3-3 proteins, and mutations in cdc25C that disrupted 14-3-3 binding also disrupted the cytoplasmic localization of cdc25C during interphase. cdc25C proteins that do not contain a binding site for 14-3-3 proteins showed a pancellular localization and an increased ability to induce premature chromosome condensation. The cytoplasmic localization of cdc25C was not altered by gamma irradiation or treatment with the nuclear export inhibitor leptomycin B. These results suggest that 14-3-3 proteins may negatively regulate cdc25C function by sequestering cdc25C in the cytoplasm.  (+info)

Effects of mimosine and 2,3-dihydroxypyridine on fiber shedding in Angora goats. (3/96)

The effects of intravenous infusion of mimosine or 2,3-dihydroxypyridine (2,3-DHP) and the effects of oral dose level of mimosine on fiber shedding in Angora goats were determined. In one experiment, 20 mature Angora wethers (36+/-1.9 kg BW) were infused for 2 d with 79, 102, or 135 mg/(kg BW.d) of mimosine, 90 mg/(kg BW.d) of 2,3-DHP, or saline. At 7 d after infusion began, fiber shedding was observed in all goats receiving mimosine but not in any goats infused with 2,3-DHP or saline. Fiber shedding varied among goats; in some goats, fiber shedding was complete and occurred without hand-plucking, whereas in others fiber was retained by nonshed fibers but could be removed by hand-plucking. Nonshed fibers were larger in diameter and more likely to be medullated (P < .05) compared with hand-plucked fibers. Mean plasma mimosine concentration at 24 and 48 h after infusion began was 79 and 98 micromol/L (P < .05), respectively, and greater (P < .05) for mimosine infused at 135 than at 102 mg/(kg BW.d) (89, 68, and 108 micromol/L for mimosine infused at 79, 102, and 135 mg/[kg BW.d], respectively; SE 9.5). In another experiment, oral dosing of eight Angora bucks (23+/-.5 kg BW) with 400 or 600 mg/kg BW of mimosine rapidly increased plasma mimosine concentration, which reached approximately 100 and 160 micromol/L at 5 h after dosing; however, periods of time during which plasma mimosine concentrations were comparable to those in the first experiment were considerably shorter. Oral mimosine dosing did not induce fiber shedding in 7 d. After 31 d, fiber was retained by nonshed fibers but could be removed by hand-plucking or could only be partially removed with difficulty by hand-plucking. There were no toxic effects of mimosine or 2,3-DHP administration; only minor, short-term inhibitions of feed intake by mimosine were noted in some goats. In conclusion, mimosine holds promise as a safe means to remove fiber of Angora goats; further research is necessary to characterize the seasonality of follicle activity and to develop convenient means of mimosine delivery.  (+info)

Lyn is activated during late G1 of stem-cell-factor-induced cell cycle progression in haemopoietic cells. (4/96)

Stem cell factor (SCF) binds the receptor tyrosine kinase c-Kit and is critical in haemopoiesis. Recently we found that the Src family member Lyn is highly expressed in SCF-responsive cells, associates with c-Kit and is activated within minutes of the addition of SCF. Here we show that SCF activates Lyn a second time, hours later, during SCF-induced cell cycle progression. In cells arrested at specific phases of the cell cycle with the drugs mimosine, aphidicolin and nocodazole, maximal Lyn kinase activity occurred in late G(1) and through the G(1)/S transition. Similarly, kinetic studies of SCF-induced cell cycle progression found that activation of Lyn preceded the G(1)/S transition and was maintained into early S-phase. Activation of Lyn was paralleled by two events critical for the G(1)/S transition, increases in cyclin-dependent kinase 2 (Cdk2) activity and phosphorylation of the retinoblastoma gene product (Rb). Lyn was associated with Cdk2; Cdk2-associated Lyn was heavily phosphorylated on serine and threonine residues both in vitro and in situ during S-phase. Inhibition of Lyn activity with PP1 disrupted association with Cdk2 and decreased the numbers of cells entering S-phase. The degree of phosphorylation of Rb in PP1-treated cells suggested an increased number of cells arrested in the middle of G(1). These findings demonstrate that SCF activates the Src family member Lyn before the G(1)/S transition of the cell cycle and suggest that Lyn is involved in SCF-induced cell cycle progression.  (+info)

Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. (5/96)

Iron chelators are pluripotent neuronal antiapoptotic agents that have been shown to enhance metabolic recovery in cerebral ischemia models. The precise mechanism(s) by which these agents exert their effects remains unclear. Recent studies have demonstrated that iron chelators activate a hypoxia signal transduction pathway in non-neuronal cells that culminates in the stabilization of the transcriptional activator hypoxia-inducible factor-1 (HIF-1) and increased expression of gene products that mediate hypoxic adaptation. We examined the hypothesis that iron chelators prevent oxidative stress-induced death in cortical neuronal cultures by inducing expression of HIF-1 and its target genes. We report that the structurally distinct iron chelators deferoxamine mesylate and mimosine prevent apoptosis induced by glutathione depletion and oxidative stress in embryonic cortical neuronal cultures. The protective effects of iron chelators are correlated with their ability to enhance DNA binding of HIF-1 and activating transcription factor 1(ATF-1)/cAMP response element-binding protein (CREB) to the hypoxia response element in cortical cultures and the H19-7 hippocampal neuronal cell line. We show that mRNA, protein, and/or activity levels for genes whose expression is known to be regulated by HIF-1, including glycolytic enzymes, p21(waf1/cip1), and erythropoietin, are increased in cortical neuronal cultures in response to iron chelator treatment. Finally, we demonstrate that cobalt chloride, which also activates HIF-1 and ATF-1/CREB in cortical cultures, also prevents oxidative stress-induced death in these cells. Altogether, these results suggest that iron chelators exert their neuroprotective effects, in part, by activating a signal transduction pathway leading to increased expression of genes known to compensate for hypoxic or oxidative stress.  (+info)

Mechanisms of G2 arrest in response to overexpression of p53. (6/96)

Overexpression of p53 causes G2 arrest, attributable in part to the loss of CDC2 activity. Transcription of cdc2 and cyclin B1, determined using reporter constructs driven by the two promoters, was suppressed in response to the induction of p53. Suppression requires the regions -287 to -123 of the cyclin B1 promoter and -104 to -74 of the cdc2 promoter. p53 did not affect the inhibitory phosphorylations of CDC2 at threonine 14 or tyrosine 15 or the activity of the cyclin-dependent kinase that activates CDC2 by phosphorylating it at threonine 161. Overexpression of p53 may also interfere with the accumulation of CDC2/cyclin B1 in the nucleus, required for cells to enter mitosis. Constitutive expression of cyclin B1, alone or in combination with the constitutively active CDC2 protein T14A Y15F, did not reverse p53-dependent G2 arrest. However, targeting cyclin B1 to the nucleus in cells also expressing CDC2 T14A Y15F did overcome this arrest. It is likely that several distinct pathways contribute to p53-dependent G2 arrest.  (+info)

Roles for basal and stimulated p21(Cip-1/WAF1/MDA6) expression and mitogen-activated protein kinase signaling in radiation-induced cell cycle checkpoint control in carcinoma cells. (7/96)

We investigated the role of the cdk inhibitor protein p21(Cip-1/WAF1/MDA6) (p21) in the ability of MAPK pathway inhibition to enhance radiation-induced apoptosis in A431 squamous carcinoma cells. In carcinoma cells, ionizing radiation (2 Gy) caused both primary (0-10 min) and secondary (90-240 min) activations of the MAPK pathway. Radiation induced p21 protein expression in A431 cells within 6 h via secondary activation of the MAPK pathway. Within 6 h, radiation weakly enhanced the proportion of cells in G(1) that were p21 and MAPK dependent, whereas the elevation of cells present in G(2)/M at this time was independent of either p21 expression or MAPK inhibition. Inhibition of the MAPK pathway increased the proportion of irradiated cells in G(2)/M phase 24-48 h after irradiation and enhanced radiation-induced apoptosis. This correlated with elevated Cdc2 tyrosine 15 phosphorylation, decreased Cdc2 activity, and decreased Cdc25C protein levels. Caffeine treatment or removal of MEK1/2 inhibitors from cells 6 h after irradiation reduced the proportion of cells present in G(2)/M phase at 24 h and abolished the ability of MAPK inhibition to potentiate radiation-induced apoptosis. These data argue that MAPK signaling plays an important role in the progression/release of cells through G(2)/M phase after radiation exposure and that an impairment of this progression/release enhances radiation-induced apoptosis. Surprisingly, the ability of irradiation/MAPK inhibition to increase the proportion of cells in G(2)/M at 24 h was found to be dependent on basal p21 expression. Transient inhibition of basal p21 expression increased the control level of apoptosis as well as the abilities of both radiation and MEK1/2 inhibitors to cause apoptosis. In addition, loss of basal p21 expression significantly reduced the capacity of MAPK inhibition to potentiate radiation-induced apoptosis. Collectively, our data argue that MAPK signaling and p21 can regulate cell cycle checkpoint control in carcinoma cells at the G(1)/S transition shortly after exposure to radiation. In contrast, inhibition of MAPK increases the proportion of irradiated cells in G(2)/M, and basal expression of p21 is required to maintain this effect. Our data suggest that basal and radiation-stimulated p21 may play different roles in regulating cell cycle progression that affect cell survival after radiation exposure.  (+info)

Mimosine is a cell-specific antagonist of folate metabolism. (8/96)

Iron deficiency and iron chelators are known to alter folate metabolism in mammals, but the underlying biochemical mechanisms have not been established. Although many studies have demonstrated that the iron chelators mimosine and deferoxamine inhibit DNA replication in mammalian cells, their mechanism of action remains controversial. The effects of mimosine on folate metabolism were investigated in human MCF-7 cells and SH-SY5Y neuroblastoma. Our findings indicate that mimosine is a folate antagonist and that its effects are cell-specific. MCF-7 cells cultured in the presence of 350 microm mimosine were growth-arrested, whereas mimosine had no effect on SH-SY5Y cell proliferation. Mimosine altered the distribution of folate cofactor forms in MCF-7 cells, indicating that mimosine targets folate metabolism. However, mimosine does not influence folate metabolism in SH-SY5Y neuroblastoma. The effect of mimosine on folate metabolism is associated with decreased cytoplasmic serine hydroxymethyltransferase (cSHMT) expression in MCF-7 cells but not in SH-SY5Y cells. MCF-7 cells exposed to mimosine for 24 h have a 95% reduction in cSHMT protein, and cSHMT promoter activity is reduced over 95%. Transcription of the cSHMT gene is also inhibited by deferoxamine in MCF-7 cells, indicating that mimosine inhibits cSHMT transcription by chelating iron. Analyses of mimosine-resistant MCF-7 cell lines demonstrate that although the effect of mimosine on cell cycle is independent of its effects on cSHMT expression, it inhibits both processes through a common regulatory mechanism.  (+info)