Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs. (57/2247)

The fluorescence properties of tryptophan octyl ester (TOE), a hydrophobic model of Trp in proteins, were investigated in various mixed micelles of dodecylmaltoside (DM) and 7,8-dibromododecyl beta-maltoside (BrDM) or 10,11-dibromoundecanoyl beta-maltoside (BrUM). This study focuses on the mechanism via which these brominated detergents quench the fluorescence of TOE in a micellar system. The experiments were performed at a pH at which TOE is uncharged and almost completely bound to detergent micelles. TOE binding was monitored by its enhanced fluorescence in pure DM micelles or its quenched fluorescence in pure BrUM or BrDM micelles. In DM/BrUM and DM/BrDM mixed micelles, the fluorescence intensity of TOE decreased, as a nonlinear function of the molar fraction of brominated detergent, to almost zero in pure brominated detergent. The indole moiety of TOE is therefore highly accessible to the bromine atoms located on the detergent alkyl chain because quenching by bromines occurs by direct contact with the fluorophore. TOE is simultaneously poorly accessible to iodide (I(-)), a water-soluble collisional quencher. TOE time-resolved fluorescence intensity decay is heterogeneous in pure DM micelles, with four lifetimes (from 0.2 to 4.4 ns) at the maximum emission wavelength. Such heterogeneity may arise from dipolar relaxation processes in a motionally restricted medium, as suggested by the time-dependent (nanoseconds) red shift (11 nm) of the TOE emission spectrum, and from the existence of various TOE conformations. Time-resolved quenching experiments for TOE in mixed micelles showed that the excited-state lifetime values decreased only slightly with increases in the proportion of BrDM or BrUM. In contrast, the relative amplitude of the component with the longest lifetime decreased significantly relative to that of the short-lived species. This is consistent with a mainly static mechanism for the quenching of TOE by brominated detergents. Molecular modeling of TOE (in vacuum and in water) suggested that the indole ring was stabilized by folding back upon the octyl chain, forming a hairpin conformation. Within micelles, the presence of such folded conformations, making it possible for the entire molecule to be located in the hydrophobic part of the micelle, is consistent with the results of fluorescence quenching experiments. TOE rotational correlation time values, in the nanosecond range, were consistent with a hindered rotation of the indole moiety and a rotation of the complete TOE molecule in the pure DM or mixed detergent micelles. These results, obtained with a simple micellar model system, provide a basis for the interpretation of fluorescence quenching by brominated detergents in more complex systems such as protein- or peptide-detergent complexes.  (+info)

The structure of the membrane-binding 38 C-terminal residues from bovine PP3 determined by liquid- and solid-state NMR spectroscopy. (58/2247)

The secondary structure and membrane-associated conformation of a synthetic peptide corresponding to the putative membrane-binding C-terminal 38 residues of the bovine milk component PP3 was determined using 1H NMR in methanol, CD in methanol and SDS micelles, and 15N solid-state NMR in planar phospholipid bilayers. The solution NMR and CD spectra reveal that the PP3 peptide in methanol and SDS predominantly adopts an alpha-helical conformation extending over its entire length with a potential bend around residue 19. 15N solid-state NMR of two PP3 peptides 15N-labelled at the Gly7 and Ala32 positions, respectively, and dissolved in dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol phospholipid bilayers shows that the peptide is associated to the membrane surface with the amphipathic helix axis oriented parallel to the bilayer surface.  (+info)

Acidic phospholipid bicelles: a versatile model membrane system. (59/2247)

With the aim of establishing acidic bicellar solutions as a useful membrane model system, we have used deuterium NMR spectroscopy to investigate the properties of dimyristoyl/dihexanoylphosphatidylcholine (DMPC/DHPC) bicelles containing 25% (w/w in H(2)O) of either dimyristoylphosphatidylserine (DMPS) or dimyristoylphosphatidylglycerol (DMPG). The addition of the acidic lipid component to this lyotropic liquid crystalline system reduces its range of stability because of poor miscibility of the two dimyristoylated phospholipids. Compared to the neutral bicelles, which are stable at pH 4 to pH 7, acidic bicelles are stable only from pH 5.5 to pH 7. Solid-state deuterium NMR analysis of d(54)-DMPC showed similar ordering in neutral and acidic bicelles. Fully deuterated DMPS or DMPG is ordered in a way similar to that of DMPC. Study of the binding of the myristoylated N-terminal 14-residue peptide mu-GSSKSKPKDPSQRR from pp60(nu-src) to both neutral and acidic bicelles shows the utility of these novel membrane mimetics.  (+info)

Refolded outer membrane protein A of Escherichia coli forms ion channels with two conductance states in planar lipid bilayers. (60/2247)

Outer membrane protein A (OmpA), a major structural protein of the outer membrane of Escherichia coli, consists of an N-terminal 8-stranded beta-barrel transmembrane domain and a C-terminal periplasmic domain. OmpA has served as an excellent model for studying the mechanism of insertion, folding, and assembly of constitutive integral membrane proteins in vivo and in vitro. The function of OmpA is currently not well understood. Particularly, the question whether or not OmpA forms an ion channel and/or nonspecific pore for uncharged larger solutes, as some other porins do, has been controversial. We have incorporated detergent-purified OmpA into planar lipid bilayers and studied its permeability to ions by single channel conductance measurements. In 1 M KCl, OmpA formed small (50-80 pS) and large (260-320 pS) channels. These two conductance states were interconvertible, presumably corresponding to two different conformations of OmpA in the membrane. The smaller channels are associated with the N-terminal transmembrane domain, whereas both domains are required to form the larger channels. The two channel activities provide a new functional assay for the refolding in vitro of the two respective domains of OmpA. Wild-type and five single tryptophan mutants of urea-denatured OmpA are shown to refold into functional channels in lipid bilayers.  (+info)

Interactions between HIV-1 gp41 core and detergents and their implications for membrane fusion. (61/2247)

The gp41 envelope protein mediates entry of human immunodeficiency virus type 1 (HIV-1) into the cell by promoting membrane fusion. The crystal structure of a gp41 ectodomain core in its fusion-active state is a six-helix bundle in which a N-terminal trimeric coiled coil is surrounded by three C-terminal outer helices in an antiparallel orientation. Here we demonstrate that the N34(L6)C28 model of the gp41 core is stabilized by interaction with the ionic detergent sodium dodecyl sulfate (SDS) or the nonionic detergent n-octyl-beta-D-glucopyranoside (betaOG). The high resolution x-ray structures of N34(L6)C28 crystallized from two different detergent micellar media reveal a six-helix bundle conformation very similar to that of the molecule in water. Moreover, N34(L6)C28 adopts a highly alpha-helical conformation in lipid vesicles. Taken together, these results suggest that the six-helix bundle of the gp41 core displays substantial affinity for lipid bilayers rather than unfolding in the membrane environment. This characteristic may be important for formation of the fusion-active gp41 core structure and close apposition of the viral and cellular membranes for fusion.  (+info)

Critical role of micelles in pancreatic lipase activation revealed by small angle neutron scattering. (62/2247)

In the duodenum, pancreatic lipase (PL) develops its activity on triglycerides by binding to the bile-emulsified oil droplets in the presence of its protein cofactor pancreatic colipase (PC). The neutron crystal structure of a PC-PL-micelle complex (Hermoso, J., Pignol, D., Penel, S., Roth, M., Chapus, C., and Fontecilla-Camps, J. C. (1997) EMBO J. 16, 5531-5536) has suggested that the stabilization of the enzyme in its active conformation and its adsorption to the emulsified oil droplets are mediated by a preformed lipase-colipase-micelle complex. Here, we correlate the ability of different amphypathic compounds to activate PL, with their association with PC-PL in solution. The method of small angle neutron scattering with D(2)O/H(2)O contrast variation was used to characterize a solution containing PC-PL complex and taurodeoxycholate micelles. The resulting radius of gyration (56 A) and the match point of the solution indicate the formation of a ternary complex that is similar to the one observed in the neutron crystal structure. In addition, we show that either bile salts, lysophospholipids, or nonionic detergents that form micelles with radii of gyration ranging from 13 to 26 A are able to bind to the PC-PL complex, whereas smaller micelles or nonmicellar compounds are not. This further supports the notion of a micelle size-dependent affinity process for lipase activation in vivo.  (+info)

Two carbohydrate recognition domains of Hyphantria cunea lectin bind to bacterial lipopolysaccharides through O-specific chain. (63/2247)

We previously identified a novel lectin cDNA from the fall webworm [Shin et al. (1998) Insect Biochem. Mol. Biol. 28, 827-837], which encodes two carbohydrate recognition domains (CRD-N and CRD-C) and is up-regulated following bacterial challenge. The lipopolysaccharide (LPS) binding activities of the recombinant CRD-N and CRD-C (rCRD-N and rCRD-C) were investigated by enzyme-linked immunosorbent assay. The LPS binding of rCRD-N and rCRD-C was pH-dependent: at pH below 6.0, they show a higher binding ability to LPS. The binding of the rCRD-N was inhibited by both D-mannose and N-acetyl-D-glucosamine, whereas the binding of the rCRD-C was inhibited only by D-mannose. The binding of both rCRD-N and rCRD-C to Escherichia coli was mainly mediated through the O-specific chain.  (+info)

Self-assembling amphiphilic siderophores from marine bacteria. (64/2247)

Most aerobic bacteria secrete siderophores to facilitate iron acquisition. Two families of siderophores were isolated from strains belonging to two different genera of marine bacteria. The aquachelins, from Halomonas aquamarina strain DS40M3, and the marinobactins, from Marinobacter sp. strains DS40M6 and DS40M8, each contain a unique peptidic head group that coordinates iron(III) and an appendage of one of a series of fatty acid moieties. These siderophores have low critical micelle concentrations (CMCs). In the absence of iron, the marinobactins are present as micelles at concentrations exceeding their CMC; upon addition of iron(III), the micelles undergo a spontaneous phase change to form vesicles. These observations suggest that unique iron acquisition mechanisms may have evolved in marine bacteria.  (+info)