Halomethane:bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source. (1/82)

A novel dehalogenating/transhalogenating enzyme, halomethane:bisulfide/halide ion methyltransferase, has been isolated from the facultatively methylotrophic bacterium strain CC495, which uses chloromethane (CH(3)Cl) as the sole carbon source. Purification of the enzyme to homogeneity was achieved in high yield by anion-exchange chromatography and gel filtration. The methyltransferase was composed of a 67-kDa protein with a corrinoid-bound cobalt atom. The purified enzyme was inactive but was activated by preincubation with 5 mM dithiothreitol and 0.5 mM CH(3)Cl; then it catalyzed methyl transfer from CH(3)Cl, CH(3)Br, or CH(3)I to the following acceptor ions (in order of decreasing efficacy): I(-), HS(-), Cl(-), Br(-), NO(2)(-), CN(-), and SCN(-). Spectral analysis indicated that cobalt in the native enzyme existed as cob(II)alamin, which upon activation was reduced to the cob(I)alamin state and then was oxidized to methyl cob(III)alamin. During catalysis, the enzyme shuttles between the methyl cob(III)alamin and cob(I)alamin states, being alternately demethylated by the acceptor ion and remethylated by halomethane. Mechanistically the methyltransferase shows features in common with cobalamin-dependent methionine synthase from Escherichia coli. However, the failure of specific inhibitors of methionine synthase such as propyl iodide, N(2)O, and Hg(2+) to affect the methyltransferase suggests significant differences. During CH(3)Cl degradation by strain CC495, the physiological acceptor ion for the enzyme is probably HS(-), a hypothesis supported by the detection in cell extracts of methanethiol oxidase and formaldehyde dehydrogenase activities which provide a metabolic route to formate. 16S rRNA sequence analysis indicated that strain CC495 clusters with Rhizobium spp. in the alpha subdivision of the Proteobacteria and is closely related to strain IMB-1, a recently isolated CH(3)Br-degrading bacterium (T. L. Connell Hancock, A. M. Costello, M. E. Lidstrom, and R. S. Oremland, Appl. Environ. Microbiol. 64:2899-2905, 1998). The presence of this methyltransferase in bacterial populations in soil and sediments, if widespread, has important environmental implications.  (+info)

Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. (2/82)

Forest and other upland soils are important sinks for atmospheric CH(4), consuming 20 to 60 Tg of CH(4) per year. Consumption of atmospheric CH(4) by soil is a microbiological process. However, little is known about the methanotrophic bacterial community in forest soils. We measured vertical profiles of atmospheric CH(4) oxidation rates in a German forest soil and characterized the methanotrophic populations by PCR and denaturing gradient gel electrophoresis (DGGE) with primer sets targeting the pmoA gene, coding for the alpha subunit of the particulate methane monooxygenase, and the small-subunit rRNA gene (SSU rDNA) of all life. The forest soil was a sink for atmospheric CH(4) in situ and in vitro at all times. In winter, atmospheric CH(4) was oxidized in a well-defined subsurface soil layer (6 to 14 cm deep), whereas in summer, the complete soil core was active (0 cm to 26 cm deep). The content of total extractable DNA was about 10-fold higher in summer than in winter. It decreased with soil depth (0 to 28 cm deep) from about 40 to 1 microg DNA per g (dry weight) of soil. The PCR product concentration of SSU rDNA of all life was constant both in winter and in summer. However, the PCR product concentration of pmoA changed with depth and season. pmoA was detected only in soil layers with active CH(4) oxidation, i.e., 6 to 16 cm deep in winter and throughout the soil core in summer. The same methanotrophic populations were present in winter and summer. Layers with high CH(4) consumption rates also exhibited more bands of pmoA in DGGE, indicating that high CH(4) oxidation activity was positively correlated with the number of methanotrophic populations present. The pmoA sequences derived from excised DGGE bands were only distantly related to those of known methanotrophs, indicating the existence of unknown methanotrophs involved in atmospheric CH(4) consumption.  (+info)

Methylobacterium mesophilicum infection: case report and literature review of an unusual opportunistic pathogen. (3/82)

Methylobacterium mesophilicum is a methylotrophic, pink pigmented, gram-negative rod that was initially isolated from environmental sources that is being increasingly reported as a cause of opportunistic infections in immunocompromised hosts. We present the case of an immunocompromised woman who developed a central catheter infection with M. mesophilicum and review the other 29 cases reported in the literature, noting that it is frequently resistant to beta-lactam agents but is generally susceptible to aminoglycosides and quinolones.  (+info)

DNA polymerase I is essential for growth of Methylobacterium dichloromethanicum DM4 with dichloromethane. (4/82)

Methylobacterium dichloromethanicum DM4 grows with dichloromethane as the unique carbon and energy source by virtue of a single enzyme, dichloromethane dehalogenase-glutathione S-transferase. A mutant of the dichloromethane-degrading strain M. dichloromethanicum DM4, strain DM4-1445, was obtained by mini-Tn5 transposon mutagenesis that was no longer able to grow with dichloromethane. Dichloromethane dehalogenase activity in this mutant was comparable to that of the wild-type strain. The site of mini-Tn5 insertion in this mutant was located in the polA gene encoding DNA polymerase I, an enzyme with a well-known role in DNA repair. DNA polymerase activity was not detected in cell extracts of the polA mutant. Conjugation of a plasmid containing the intact DNA polymerase I gene into the polA mutant restored growth with dichloromethane, indicating that the polA gene defect was responsible for the observed lack of growth of this mutant with dichloromethane. Viability of the DM4-1445 mutant was strongly reduced upon exposure to both UV light and dichloromethane. The polA'-lacZ transcriptional fusion resulting from mini-Tn5 insertion was constitutively expressed at high levels and induced about twofold after addition of 10 mM dichloromethane. Taken together, these data indicate that DNA polymerase I is essential for growth of M. dichloromethanicum DM4 with dichloromethane and further suggest an important role of the DNA repair machinery in the degradation of halogenated, DNA-alkylating compounds by bacteria.  (+info)

Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. (5/82)

Rhizobia described so far belong to three distinct phylogenetic branches within the alpha-2 subclass of Proteobacteria. Here we report the discovery of a fourth rhizobial branch involving bacteria of the Methylobacterium genus. Rhizobia isolated from Crotalaria legumes were assigned to a new species, "Methylobacterium nodulans," within the Methylobacterium genus on the basis of 16S ribosomal DNA analyses. We demonstrated that these rhizobia facultatively grow on methanol, which is a characteristic of Methylobacterium spp. but a unique feature among rhizobia. Genes encoding two key enzymes of methylotrophy and nodulation, the mxaF gene, encoding the alpha subunit of the methanol dehydrogenase, and the nodA gene, encoding an acyltransferase involved in Nod factor biosynthesis, were sequenced for the type strain, ORS2060. Plant tests and nodA amplification assays showed that "M. nodulans" is the only nodulating Methylobacterium sp. identified so far. Phylogenetic sequence analysis showed that "M. nodulans" NodA is closely related to Bradyrhizobium NodA, suggesting that this gene was acquired by horizontal gene transfer.  (+info)

Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. (6/82)

Two chloromethane-utilizing facultatively methylotrophic bacteria, strains CM2T and CM4T, were isolated from soil at a petrochemical factory. On the basis of their morphological, physiological and genotypical properties, strain CM2T (= VKM B-2176T = NCIMB 13687T) is proposed as a new species of the genus Hyphomicrobium, Hyphomicrobium chloromethanicum, and strain CM4T (= VKM B-2223T = NCIMB 13688T) as a new species of the genus Methylobacterium, Methylobacterium chloromethanicum.  (+info)

Sequence variation in dichloromethane dehalogenases/glutathione S-transferases. (7/82)

Dichloromethane dehalogenase/glutathione S-transferase allows methylotrophic bacteria to grow with dichloromethane (DCM), a predominantly man-made compound. Bacteria growing with DCM by virtue of this enzyme have been readily isolated in the past. So far, the sequence of the dcmA gene encoding DCM dehalogenase has been determined for Methylobacterium dichloromethanicum DM4 and Methylophilus sp. DM11. DCM dehalogenase genes closely related to that of strain DM4 were amplified by PCR and cloned from total DNA from 14 different DCM-degrading strains, enrichment cultures and sludge samples from wastewater treatment plants. In total, eight different sequences encoding seven different protein sequences were obtained. Sequences of different origin were identical in several instances. Sequence variation was limited to base substitutions; strikingly, 16 of the 19 substitutions in the dcmA gene itself encoded amino acids that were different from those of the DM4 sequence. The kinetic parameters k(cat) and K:(m), the pH optimum and the stability of representative DCM dehalogenase variants were investigated, revealing minor differences between the properties of DCM dehalogenases related to that from strain DM4.  (+info)

Chloromethane: tetrahydrofolate methyl transfer by two proteins from Methylobacterium chloromethanicum strain CM4. (8/82)

The cmuA and cmuB genes are required for growth of Methylobacterium chloromethanicum strain CM4 with chloromethane as the sole carbon source. While CmuB was previously shown to possess methylcobalamin:tetrahydrofolate methyltransferase activity, sequence analysis indicated that CmuA represented a novel and so far unique two-domain methyltransferase/corrinoid-binding protein involved in methyl transfer from chloromethane to a corrin moiety. CmuA was purified from wild-type M. chloromethanicum strain CM4 and characterized as a monomeric, cobalt-containing and zinc-containing enzyme of molecular mass 67 kDa with a bound vitamin B12 cofactor. In combination, CmuA and CmuB proteins catalyze the in vitro transfer of the methyl group of chloromethane to tetrahydrofolate, thus affording a direct link between chloromethane dehalogenation and core C1 metabolism of Methylobacterium. Chloromethane dehalogenase activity in vitro is limited by CmuB, as formation of methyltetrahydrofolate from chloromethane displays apparent Michaelis-Menten kinetics with respect to methylated CmuA, with an apparent Km of 0.27 microM and a Vmax of 0.45 U x mg(-1). This contrasts with sequence-related systems for methyl transfer from methanogens, which involve methyltransferase and corrinoid protein components in well-defined stoichiometric ratios.  (+info)