Separation of shoot and floral identity in Arabidopsis. (1/1220)

The overall morphology of an Arabidopsis plant depends on the behaviour of its meristems. Meristems derived from the shoot apex can develop into either shoots or flowers. The distinction between these alternative fates requires separation between the function of floral meristem identity genes and the function of an antagonistic group of genes, which includes TERMINAL FLOWER 1. We show that the activities of these genes are restricted to separate domains of the shoot apex by different mechanisms. Meristem identity genes, such as LEAFY, APETALA 1 and CAULIFLOWER, prevent TERMINAL FLOWER 1 transcription in floral meristems on the apex periphery. TERMINAL FLOWER 1, in turn, can inhibit the activity of meristem identity genes at the centre of the shoot apex in two ways; first by delaying their upregulation, and second, by preventing the meristem from responding to LEAFY or APETALA 1. We suggest that the wild-type pattern of TERMINAL FLOWER 1 and floral meristem identity gene expression depends on the relative timing of their upregulation.  (+info)

The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. (2/1220)

In Arabidopsis embryogenesis, the primary root meristem originates from descendants of both the apical and the basal daughter cell of the zygote. We have isolated a mutant of a new gene named BODENLOS (BDL) in which the primary root meristem is not formed whereas post-embryonic roots develop and bdl seedlings give rise to fertile adult plants. Some bdl seedlings lacked not only the root but also the hypocotyl, thus resembling monopteros (mp) seedlings. In addition, bdl seedlings were insensitive to the auxin analogue 2,4-D, as determined by comparison with auxin resistant1 (axr1) seedlings. bdl embryos deviated from normal development as early as the two-cell stage at which the apical daughter cell of the zygote had divided horizontally instead of vertically. Subsequently, the uppermost derivative of the basal daughter cell, which is normally destined to become the hypophysis, divided abnormally and failed to generate the quiescent centre of the root meristem and the central root cap. We also analysed double mutants. bdl mp embryos closely resembled the two single mutants, bdl and mp, at early stages, while bdl mp seedlings essentially consisted of hypocotyl but did form primary leaves. bdl axr1 embryos approached the mp phenotype at later stages, and bdl axr1 seedlings resembled mp seedlings. Our results suggest that BDL is involved in auxin-mediated processes of apical-basal patterning in the Arabidopsis embryo.  (+info)

Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. (3/1220)

The shoot apical meristem and cotyledons of higher plants are established during embryogenesis in the apex. Redundant CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 as well as SHOOT MERISTEMLESS (STM) of Arabidopsis are required for shoot apical meristem formation and cotyledon separation. To elucidate how the apical region of the embryo is established, we investigated genetic interactions among CUC1, CUC2 and STM, as well as the expression patterns of CUC2 and STM mRNA. Expression of these genes marked the incipient shoot apical meristem as well as the boundaries of cotyledon primordia, consistent with their roles for shoot apical meristem formation and cotyledon separation. Genetic and expression analyses indicate that CUC1 and CUC2 are redundantly required for expression of STM to form the shoot apical meristem, and that STM is required for proper spatial expression of CUC2 to separate cotyledons. A model for pattern formation in the apical region of the Arabidopsis embryo is presented.  (+info)

Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. (4/1220)

In higher plants, organogenesis occurs continuously from self-renewing apical meristems. Arabidopsis thaliana plants with loss-of-function mutations in the CLAVATA (CLV1, 2, and 3) genes have enlarged meristems and generate extra floral organs. Genetic analysis indicates that CLV1, which encodes a receptor kinase, acts with CLV3 to control the balance between meristem cell proliferation and differentiation. CLV3 encodes a small, predicted extracellular protein. CLV3 acts nonautonomously in meristems and is expressed at the meristem surface overlying the CLV1 domain. These proteins may act as a ligand-receptor pair in a signal transduction pathway, coordinating growth between adjacent meristematic regions.  (+info)

Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. (5/1220)

Plasmodesmata provide symplastic continuity linking individual plant cells. However, specialized cells may be isolated, either by the absence of plasmodesmata or by down regulation of the cytoplasmic flux through these channels, resulting in the formation of symplastic domains. Maintenance of these domains may be essential for the co-ordination of growth and development. While cells in the center of the meristem divide slowly and remain undifferentiated, cells on the meristem periphery divide more frequently and respond to signals determining organ fate. Such symplastic domains were visualized within shoot apices of Arabidopsis, by monitoring fluorescent symplastic tracers (HPTS: 8-hydroxypyrene 1,3,6 trisulfonic acid and CF: carboxy fluorescein). Tracers were loaded through cut leaves and distributed throughout the whole plant. Confocal laser scanning microscopy on living Arabidopsis plants indicates that HPTS moves via the vascular tissue from leaves to the apex where the tracer exits the phloem and moves symplastically into surrounding cells. The distribution of HPTS was monitored in vegetative apices, and just prior to, during, and after the switch to production of flowers. The apices of vegetative plants loaded with HPTS had detectable amounts of tracer in the tunica layer of the meristem and in very young primordia, whereas the corpus of the meristem excluded tracer uptake. Fluorescence signal intensity decreased prior to the onset of flowering. Moreover, at approximately the time the plants were committed to flowering, HPTS was undetectable in the inflorescence meristem or young primordia. Later in development, after several secondary inflorescences and mature siliques appeared, inflorescence apices again showed tracer loading at levels comparable to that of vegetative apices. Thus, analysis of fluorescent tracer movement via plasmodesmata reveals there is distinct temporal and spatial regulation of symplastic domains at the apex, dependent on the developmental stage of the plant.  (+info)

ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. (6/1220)

The regulation of members of the knotted1-like homeobox (knox) gene family is required for the normal initiation and development of lateral organs. The maize rough sheath2 (rs2) gene, which encodes a Myb-domain protein, is expressed in lateral organ primordia and their initials. Mutations in the rs2 gene permit ectopic expression of knox genes in leaf and floral primordia, causing a variety of developmental defects. Ectopic KNOX protein accumulation in rs2 mutants occurs in a subset of the normal rs2-expressing cells. This variegated accumulation of KNOX proteins in rs2 mutants suggests that rs2 represses knox expression through epigenetic means.  (+info)

Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development. (7/1220)

A recessive mutation in the Arabidopsis STERILE APETALA (SAP) causes severe aberrations in inflorescence and flower and ovule development. In sap flowers, sepals are carpelloid, petals are short and narrow or absent, and anthers are degenerated. Megasporogenesis, the process of meiotic divisions preceding the female gametophyte formation, is arrested in sap ovules during or just after the first meiotic division. More severe aberrations were observed in double mutants between sap and mutant alleles of the floral homeotic gene APETALA2 (AP2) suggesting that both genes are involved in the initiation of female gametophyte development. Together with the organ identity gene AGAMOUS (AG) SAP is required for the maintenance of floral identity acting in a manner similar to APETALA1. In contrast to the outer two floral organs in sap mutant flowers, normal sepals and petals develop in ag/sap double mutants, indicating that SAP negatively regulates AG expression in the perianth whorls. This supposed cadastral function of SAP is supported by in situ hybridization experiments showing ectopic expression of AG in the sap mutant. We have cloned the SAP gene by transposon tagging and revealed that it encodes a novel protein with sequence motifs, that are also present in plant and animal transcription regulators. Consistent with the mutant phenotype, SAP is expressed in inflorescence and floral meristems, floral organ primordia, and ovules. Taken together, we propose that SAP belongs to a new class of transcription regulators essential for a number of processes in Arabidopsis flower development.  (+info)

CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. (8/1220)

To help understand the process of carpel morphogenesis, the roles of three carpel development genes have been partitioned genetically. Mutants of CRABS CLAW cause the gynoecium to develop into a wider but shorter structure, and the two carpels are unfused at the apex. Mutants of a second gene, SPATULA, show reduced growth of the style, stigma, and septum, and the transmitting tract is absent. Double mutants of crabs claw and spatula with homeotic mutants that develop ectopic carpels demonstrate that CRABS CLAW and SPATULA are necessary for, and inseparable from, carpel development, and that their action is negatively regulated by A and B organ identity genes. The third carpel gene studied, AGAMOUS, encodes C function that has been proposed to fully specify carpel identity. When AGAMOUS function is removed together with the A class gene APETALA2, however, the organs retain many carpelloid properties, suggesting that other genes are also involved. We show here that further mutant disruption of both CRABS CLAW and SPATULA function removes remaining carpelloid properties, revealing that the three genes together are necessary to generate the mature gynoecium. In particular, AGAMOUS is required to specify the identity of the carpel wall and to promote the stylar outgrowth at the apex, CRABS CLAW suppresses radial growth of the developing gynoecium but promotes its longitudinal growth, and SPATULA supports development of the carpel margins and tissues derived from them. The three genes mostly act independently, although there is genetic evidence that CRABS CLAW enhances AGAMOUS and SPATULA function.  (+info)