Conductivity tensor mapping of the human brain using diffusion tensor MRI. (57/1144)

Knowledge of the electrical conductivity properties of excitable tissues is essential for relating the electromagnetic fields generated by the tissue to the underlying electrophysiological currents. Efforts to characterize these endogenous currents from measurements of the associated electromagnetic fields would significantly benefit from the ability to measure the electrical conductivity properties of the tissue noninvasively. Here, using an effective medium approach, we show how the electrical conductivity tensor of tissue can be quantitatively inferred from the water self-diffusion tensor as measured by diffusion tensor magnetic resonance imaging. The effective medium model indicates a strong linear relationship between the conductivity and diffusion tensor eigenvalues (respectively, final sigma and d) in agreement with theoretical bounds and experimental measurements presented here (final sigma/d approximately 0.844 +/- 0.0545 S small middle dots/mm(3), r(2) = 0.945). The extension to other biological transport phenomena is also discussed.  (+info)

Superior formation of cortical memory traces for melodic patterns in musicians. (58/1144)

The human central auditory system has a remarkable ability to establish memory traces for invariant features in the acoustic environment despite continual acoustic variations in the sounds heard. By recording the memory-related mismatch negativity (MMN) component of the auditory electric and magnetic brain responses as well as behavioral performance, we investigated how subjects learn to discriminate changes in a melodic pattern presented at several frequency levels. In addition, we explored whether musical expertise facilitates this learning. Our data show that especially musicians who perform music primarily without a score learn easily to detect contour changes in a melodic pattern presented at variable frequency levels. After learning, their auditory cortex detects these changes even when their attention is directed away from the sounds. The present results thus show that, after perceptual learning during attentive listening has taken place, changes in a highly complex auditory pattern can be detected automatically by the human auditory cortex and, further, that this process is facilitated by musical expertise.  (+info)

Dynamic organization of the somatosensory cortex induced by motor activity. (59/1144)

Intensive and long-lasting experience of altered sensory input induces permanent changes in the functional organization of the somatosensory cortex. In addition, an increasing body of evidence suggests the existence of dynamic, short-term and task-dependent adaptation of representational maps within somatosensory cortex. It is hypothesized that somatosensory maps can, not only, be acquired within a short period of time, but might also be set up during periods of training related to specific tasks and subsequently activated dynamically upon performance of that particular task. In order to test this hypothesis we studied the functional organization of somatosensory cortex for a heavily overlearned and frequently performed task for which no new acquisition of a sensory map had to be assumed. To this end, the functional organization of somatosensory cortex for handwriting was compared with the organization during rest in healthy humans. Functional organization of the somatosensory cortex was assessed using non-invasive, neuromagnetic source imaging based on tactile stimulation of the thumb (D1) and little finger (D5) during writing and rest. In different blocks, subjects wrote with their right, dominant and their left hand, respectively. During writing, D1 and D5 of the writing hand were stimulated. To test the reliability of our results all measurements were repeated after 1 week. It was found that amplitudes of somatosensory evoked magnetic fields with latencies of 45 ms were reduced during writing compared with rest. This finding is in accordance with the sensorimotor gating effect. Using source localization we could show that cortical representations of D1 and D5 are more distant during writing with either hand compared with rest. Our data suggest that somatosensory cortical maps undergo rapid modulation depending on task-specific involvement of sensory processing in daily-life overlearned movements. As it is unlikely that a new sensory map is always acquired when a frequently used task such as writing is performed, we suggest that somatosensory cortex switches between different, concurrently pre-existing maps depending on actual requirements. Task-dependent activation of pre-existing maps might be a powerful mechanism to optimize stimulus processing.  (+info)

Dynamics of gamma-band activity induced by auditory pattern changes in humans. (60/1144)

Increasing evidence suggests separate auditory pattern and space processing streams. The present paper describes two magnetoencephalogram studies examining gamma-band activity to changes in auditory patterns using consonant-vowel syllables (experiment 1), animal vocalizations and artificial noises (experiment 2). Two samples of each sound type were presented to passively listening subjects in separate oddball paradigms with 80% standards and 20% deviants differing in their spectral composition. Evoked magnetic mismatch fields peaking approximately 190 ms poststimulus showed a trend for a left-hemisphere advantage for syllables, but no hemispheric differences for the other sounds. Frequency analysis and statistical probability mapping of the differences between deviants and standards revealed increased gamma-band activity above 60 Hz over left anterior temporal/ventrolateral prefrontal cortex for all three types of stimuli. This activity peaked simultaneously with the mismatch responses for animal sounds (180 ms) but was delayed for noises (260 ms) and syllables (320 ms). Our results support the hypothesized role of anterior temporal/ventral prefrontal regions in the processing of auditory pattern change. They extend earlier findings of gamma-band activity over posterior parieto-temporal cortex during auditory spatial processing that supported the putative auditory dorsal stream. Furthermore, earlier gamma-band responses to animal vocalizations may suggest faster processing of fear-relevant information.  (+info)

Functional redundancy of ventral spinal locomotor pathways. (61/1144)

Identification of long tracts responsible for the initiation of spontaneous locomotion is critical for spinal cord injury (SCI) repair strategies. Pathways derived from the mesencephalic locomotor region and pontomedullary medial reticular formation responsible for fictive locomotion in decerebrate preparations project to the thoracolumbar levels of the spinal cord via reticulospinal axons in the ventrolateral funiculus (VLF). However, white matter regions critical for spontaneous over-ground locomotion remain unclear because cats, monkeys, and humans display varying degrees of locomotor recovery after ventral SCIs. We studied the contributions of myelinated tracts in the VLF and ventral columns (VC) to spontaneous over-ground locomotion in the adult rat using demyelinating lesions. Animals received ethidium bromide plus photon irradiation producing discrete demyelinating lesions sufficient to stop axonal conduction in the VLF, VC, VLF-VC, or complete ventral white matter (CV). Behavior [open-field Basso, Beattie, and Bresnahan (BBB) scores and grid walking] and transcranial magnetic motor-evoked potentials (tcMMEP) were studied at 1, 2, and 4 weeks after lesion. VLF lesions resulted in complete loss or severe attenuation of tcMMEPs, with mean BBB scores of 18.0, and no grid walking deficits. VC lesions produced behavior similar to VLF-lesioned animals but did not significantly affect tcMMEPs. VC-VLF and CV lesions resulted in complete loss of tcMMEP signals with mean BBB scores of 12.7 and 6.5, respectively. Our data support a diffuse arrangement of axons within the ventral white matter that may comprise a system of multiple descending pathways subserving spontaneous over-ground locomotion in the intact animal.  (+info)

Changes of neural activity correlate with the severity of cortical ischemia in patients with unilateral major cerebral artery occlusion. (62/1144)

BACKGROUND AND PURPOSE: In major cerebral arterial steno-occlusive diseases, there can be remarkably decreased hemodynamic reserve without marked neurological impairments. In such settings, it is not known whether the neural activity is well maintained or disturbed according to the severity of cerebral ischemia. The present study was therefore undertaken to examine the neural activity under mild cerebral ischemia resulting from major cerebral arterial occlusion. METHODS: Seven patients with minor neurological impairment as well as either unilateral internal carotid artery or middle cerebral artery occlusion were studied. The severity of the cortical ischemia was assessed by measuring regional cerebral blood flow (rCBF) with positron emission tomography. The change in neural activity in the ischemic brain was then evaluated by means of somatosensory evoked magnetic field with magnetoencephalography. RESULTS: The rCBF in the primary sensory area and the strength of the initial component of somatosensory evoked magnetic field (N20 m) were significantly reduced (P<0.01) and the second component (P30 m) was significantly augmented (P<0.05) in the lesioned cerebral hemisphere as compared with the nonlesioned hemisphere. The asymmetry indexes for N20 m were positively correlated (r=0.78) and those for P30 m were inversely correlated (r=-0.92) with asymmetry indexes for rCBF. CONCLUSIONS: In patients with either unilateral internal carotid artery or middle cerebral artery occlusion and minor neural impairments, there was a reduction of afferent signal and an augmentation of the secondary response of the neurons in the primary sensory area. This showed correlation with the severity of cortical ischemia.  (+info)

Synchronized spikes of thalamocortical axonal terminals and cortical neurons are detectable outside the pig brain with MEG. (63/1144)

We show that it is feasible to monitor the synchronized population spikes of the thalamocortical axonal terminals and cortical neurons outside the brain using high-resolution magnetoencephalography (MEG). Electrical stimulation of the snout elicited somatic-evoked magnetic fields (SEFs) above the primary somatosensory cortex (SI) of the piglet. The SEFs contained high-frequency oscillations (HFOs) around 600 Hz similar in many respects to the noninvasively measured HFOs from humans with MEG and electroencephalography (EEG). These HFOs were highly correlated with those in simultaneously measured intracortical somatic-evoked potentials (SEPs) in the snout projection area in SI. Both HFOs in SEFs and SEPs consisted of an initial component insensitive to cortically injected kynurenic acid (Kyna, 20 mM), a nonspecific antagonist of glutamatergic receptors, and a subsequent Kyna-sensitive component. The former was localized in cortical layer IV, indicating that it was due to spikes produced by the specific thalamocortical axonal terminals, whereas the latter was initially localized in layer IV and subsequently in the superficial and deeper layers. These results suggest that it may be possible to study properties of the thalamocortical and cortical spike activities in humans with MEG.  (+info)

Neuromagnetic responses to frequency-tagged sounds: a new method to follow inputs from each ear to the human auditory cortex during binaural hearing. (64/1144)

Binaural cortical responses are mixtures of inputs from both ears. We introduce here a novel method that allows, for the first time, to selectively follow these inputs in humans up to the cortex during binaural hearing. We recorded neuromagnetic cortical responses to amplitude-modulated continuous tones, with different modulation frequencies at each ear. During binaural hearing, the left- and right-ear inputs competed strongly in both auditory cortices: the right-hemisphere responses were symmetrically suppressed, compared with monaural stimulation, for sounds of both ears, whereas the left-hemisphere responses were suppressed significantly more for ipsilateral than contralateral sounds, thereby intensifying the right-ear dominance of the left auditory cortex. This type of hemisphere- and ear-selective information on cortical binaural interaction could have important applications in human auditory neuroscience.  (+info)