Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI. (17/1447)

We have used voluntary tongue contraction to test whether we can image activation of the hypoglossal nuclei within the human brain stem by using functional magnetic resonance imaging (fMRI). Functional images of the whole brain were acquired in eight subjects by using T2-weighted echo planar imaging (blood oxygen level development) every 6.2 s. Sequences of images were acquired during 12 periods of 31-s "isometric" rhythmic tongue contraction alternated with 12 periods of 31-s tongue relaxation. Noise arising from cardiac- and respiratory-related movement was removed either by filtration (high pass; cutoff 120 s) or by inclusion in the statistical analysis as confounding effects of no interest. For the group, tongue contraction was associated with significant signal increases (P < 0.05 corrected for multiple comparisons) in the sensorimotor cortex, supplementary motor area, operculum, insula, thalamus, and cerebellum. For the group and for six of eight individuals, significant signal increases were also seen within the medulla (P < 0.001, predefined region of interest with no correction for multiple comparisons); this signal is most likely to reflect neuronal activation associated with the hypoglossal motor nuclei. The data demonstrate that fMRI can be used to detect, simultaneously, the cerebral and brain stem control of tongue movement.  (+info)

Coordinate expression of cytokeratins 7 and 20 in feline and canine carcinomas. (18/1447)

Forty-seven feline and 60 canine epithelial tumors were studied to test the coordinate expression of cytokeratin 7 (CK 7) and cytokeratin 20 (CK 20) using commercially available monoclonal antibodies and an avidin-biotin immunoperoxidase staining technique. Previously, the distribution of both cytokeratins was examined in normal tissues from 4 cats and 4 dogs. The pattern of distribution of CK 7 in normal tissues was similar, with minor differences, to that described in humans, whereas the reactivity pattern of CK 20 in cats and dogs was wider than that in humans. The subset of tumors strongly expressing CK 7 and CK 20 included pancreatic adenocarcinomas (100%), transitional cell carcinomas (75%), and endometrial carcinomas (67%) in the cat. None of the canine tumors had this immunophenotype. Feline (50%) and canine (56%) mammary gland carcinomas and canine cholangiocarcinomas (67%) were the only tumors presenting the CK 7 +/CK 20- immunophenotype, whereas the CK 7-/CK 20+ immunophenotype included thyroid carcinomas (100%), intestinal adenocarcinomas (60%), bronchioloalveolar carcinomas (50%), and renal carcinomas (50%) in the cat and intestinal adenocarcinomas (56%), gastric adenocarcinomas (50%), and ovarian carcinomas (50%) in the dog. The CK 7-/CK 20- immunophenotype included the rest of the analyzed tumors. The immunohistochemical evaluation of coordinate expression of both CK 7 and CK 20 in feline and canine carcinomas using monoclonal antibodies provides important information that can help to discriminate among carcinomas from different primary sites and could be particularly helpful in the determination of the primary site of origin of carcinomas presenting as metastatic disease.  (+info)

Porcine epithelial beta-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. (19/1447)

Epithelial cells and phagocytes contain antimicrobial polypeptides that participate in innate host defense. A recently cloned porcine beta-defensin, PBD-1, was detected by Northern organ blots exclusively in the tongue epithelium. We generated recombinant PBD-1 peptide by using a baculovirus-insect cell expression system and obtained two forms (PBD-142 and PBD-138), which differed by N-terminal truncation. Only PBD-142 was found in scrapings of the surface of the dorsal tongue or the buccal mucosa. Immunohistochemical staining with antibody to PBD-142 revealed that PBD-1 was highly concentrated in an approximately 0.1-mm-thick layer in the cornified tips of the filiform (but not fungiform) papillae of the dorsal tongue and in the superficial squamous cell layers of the buccal mucosa. By scraping, extraction, and semiquantitative Western blotting, the concentration of PBD-1 in the dorsal tongue surface and the buccal mucosa was estimated at 20 to 100 micrograms/ml. PBD-1 had antibacterial activity against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, and Candida albicans in 10 mM sodium phosphate buffer (pH 7.4). Added NaCl progressively inhibited the activity of PBD-1 against E. coli and C. albicans. In 10 mM sodium phosphate with 125 mM NaCl, the combinations of sublethal concentrations of PBD-1 and the porcine neutrophil peptide PG-3, PR-39, or PR-26 showed synergistic activity against E. coli or the multidrug-resistant S. typhimurium DT104. At its physiologic concentration, PBD-1 has antimicrobial effects under both low- and high-salt conditions encountered in the oral cavity and may contribute to the antimicrobial barrier properties of the dorsal tongue and oral epithelium.  (+info)

Developmental aspects of secondary palate formation. (20/1447)

Research on development of the secondary palate has, in the past, dealt primarily with morphological aspects of shelf elevation and fusion. The many factors thought to be involved in palatal elevation, such as fetal neuromuscular activity and growth of the cranial base and mandible, as well as production of extracellular matrix and contractile elements in the palate, are mostly based on gross, light microscopic, morphometric or histochemical observations. Recently, more biochemical procedures have been utilized to described palatal shelf elevation. Although these studies strongly suggest that palatal extracellular matrix plays a major role in shelf movement, interpretation of these data remains difficult owing to the complexity of tissue interactions involved in craniofacial development. Shelf elevation does not appear to involve a single motive factor, but rather a coordinated interaction of all of the abovementioned developmental events. Further analysis of mechanisms of shelf elevation requires development of new, and refinement of existing, in vitro procedures. A system that enables one to examine shelf elevation in vitro would allow more meaningful analysis of the relative importance of the various components in shelf movement. Much more is known about fusion of the palatal shelves, owing in large part to in vitro studies. Fusion of the apposing shelves, both in vivo and in vitro, is dependent upon adhesion and cell dealth of the midline epithelial cells. Adhesion betweeen apposing epithelial surfaces appears to involve epithelial cell surface macromolecules. Further analysis of palatal epithelial adhesion should be directed towards characterization of those cell surface components responsible for this adhesive interaction. Midline epithelial cells cease DNA synthesis 24-36 h before shelf elevation and contact, become active in the synthesis of cell surface glycoproteins, and subsequently manifest morphological signs of necrosis. Death of the midline epithelial cells is thought to involve a programmed, lysosomal-mediated autolysis...  (+info)

Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. (21/1447)

Sensory ganglia that innervate taste buds and gustatory papillae (geniculate and petrosal) are reduced in volume by about 40% in mice with a targeted deletion of the gene for brain-derived neurotrophic factor (BDNF). In contrast, the trigeminal ganglion, which innervates papillae but not taste buds on the anterior tongue, is reduced by only about 18%. These specific alterations in ganglia that innervate taste organs make possible a test for roles of lingual innervation in the development of appropriate number, morphology, and spatial pattern of fungiform and circumvallate papillae and associated taste buds. We studied tongues of BDNF null mutant and wild-type littermates and made quantitative analyses of all fungiform papillae on the anterior tongue, the single circumvallate papilla on the posterior tongue, and all taste buds in both papilla types. Fungiform papillae and taste buds were reduced in number by about 60% and were substantially smaller in diameter in mutant mice 15-25 days postnatal. Remaining fungiform papillae were selectively concentrated in the tongue tip region. The circumvallate papilla was reduced in diameter and length by about 40%, and papilla morphology was disrupted. Taste bud number in the circumvallate was reduced by about 70% in mutant tongues, and the remaining taste buds were smaller than those on wild-type tongues. Our results demonstrate a selective dependence of taste organs on a full complement of appropriate innervation for normal growth and morphogenesis. Effects on papillae are not random but are more pronounced in specific lingual regions. Although the geniculate and petrosal ganglia sustain at least half of their normal complement of cell number in BDNF -/- mice, remaining ganglion cells do not substitute for lost neurons to rescue taste organs at control numbers. Whereas gustatory ganglia and the taste papillae initially form independently, our results suggest interdependence in later development because ganglia derive BDNF support from target organs and papillae require sensory innervation for morphogenesis.  (+info)

Conditional expression of the ErbB2 oncogene elicits reversible hyperplasia in stratified epithelia and up-regulation of TGFalpha expression in transgenic mice. (22/1447)

The ErbB2 receptor tyrosine kinase (RTK) is expressed in basal cells of squamous epithelia and the outer root sheath of hair follicles. We previously showed that constitutive expression of activated ErbB2 directed to these sites in the skin by the keratin 14 (K14) promoter produces prominent hair follicle abnormalities and striking skin hyperplasia in transgenic mice. However, perinatal lethality precluded the establishment of a transgenic line for analysis of ErbB2 function in adult animals. To investigate the significance of ErbB2 signaling in epithelial tissues during and post development, we developed a K14-rtTA/TetRE-ErbB2 'Tet-On' bitransgenic mouse system. These mice were normal until the ErbB2 transgene was induced by exposure to doxycycline (Dox). Prenatal induction resulted in perinatal death. Postnatally, ErbB2 transgene expression was observed at 4 h after the initiation of Dox, and reached a plateau at 24 h. Skin hyperplasia followed after 2 days and these changes reverted to normal upon Dox withdrawal. In adults, as in the neonates, prolonged ErbB2 induction caused prominent skin and hair follicle hyperplasias. Severe hyperplasias in the cornea, eye lids, tongue and esophagus were also observed. ErbB2 transgene induction was accompanied by increased expression of TGFalpha, a ligand of epidermal growth factor receptor (EGFR), and to a lesser extent, EGFR, further enhancing RTK signal transduction. We conclude that ErbB2 plays important roles in both development and maintenance of hair follicles and diverse squamous epithelia and that this ligand-inducible and tissue-specific 'Tet-On' transgenic mouse system provides a means to study transgenes with perinatal toxicity.  (+info)

Neuromuscular control of prey capture in frogs. (23/1447)

While retaining a feeding apparatus that is surprisingly conservative morphologically, frogs as a group exhibit great variability in the biomechanics of tongue protraction during prey capture, which in turn is related to differences in neuromuscular control. In this paper, I address the following three questions. (1) How do frog tongues differ biomechanically? (2) What anatomical and physiological differences are responsible? (3) How is biomechanics related to mechanisms of neuromuscular control? Frog species use three non-exclusive mechanisms to protract their tongues during feeding: (i) mechanical pulling, in which the tongue shortens as its muscles contract during protraction; (ii) inertial elongation, in which the tongue lengthens under inertial and muscular loading; and (iii) hydrostatic elongation, in which the tongue lengthens under constraints imposed by the constant volume of a muscular hydrostat. Major differences among these functional types include (i) the amount and orientation of collagen fibres associated with the tongue muscles and the mechanical properties that this connective tissue confers to the tongue as a whole; and (ii) the transfer of intertia from the opening jaws to the tongue, which probably involves a catch mechanism that increases the acceleration achieved during mouth opening. The mechanisms of tongue protraction differ in the types of neural mechanisms that are used to control tongue movements, particularly in the relative importance of feed-forward versus feedback control, in requirements for precise interjoint coordination, in the size and number of motor units, and in the afferent pathways that are involved in coordinating tongue and jaw movements. Evolution of biomechanics and neuromuscular control of frog tongues provides an example in which neuromuscular control is finely tuned to the biomechanical constraints and opportunities provided by differences in morphological design among species.  (+info)

Effects of amphetamine on development of oral candidiasis in rats. (24/1447)

Experiments were conducted to evaluate the effects of amphetamine (0. 4 mg/kg of body weight/day) on the development of oral candidiasis in Sprague-Dawley rats. Animals were submitted to surgical hyposalivation in order to facilitate the establishment and persistence of Candida albicans infection. Treatment with drugs (placebo or amphetamine) was initiated 7 days before C. albicans inoculation and lasted until the end of the experiments, day 15 postinoculation. Establishment of C. albicans infection was evaluated by swabbing the inoculated oral cavity with a sterile cotton applicator on days 2 and 15 after inoculation, followed by plating on YEPD (yeast extract-peptone-dextrose) agar. Tissue injury was determined by the quantification of the number and type (normal or abnormal) of papillae on the dorsal tongue per microscopic field. A semiquantitative scale was devised to assess the degree of colonization of the epithelium by fungal hyphae. Our results show that amphetamine exacerbates C. albicans infection of the tongues of rats. Significant increases in Candida counts, the percentage of the tongue's surface covered with clinical lesions, the percentage of abnormal papillae, and the colonization of the epithelium by fungal hyphae were found in amphetamine-treated rats compared to those found in the rats injected with a placebo. The last two parameters increased in rats treated with the placebo compared to the parameters of the untreated control rats.  (+info)