Antiproliferative constituents in plants 9. Aerial parts of Lippia dulcis and Lippia canescens. (1/36)

The antiproliferative constituents in the MeOH extracts of the aerial parts of Lippia dulcis Trev. and Lippia canescens Kunth (Verbenaceae) were investigated. Activity-guided chemical investigation of the MeOH extracts resulted in the isolation of the three bisabolane-type sesquiterpenes [(+)-hernandulcin (1), (-)-epihernandulcin (2), and (+)-anymol (3)] and four phenylethanoid glycosides [acteoside (4), isoacteoside (5), martynoside (6), and a new diacetylmartynoside (7)] from the former, and four phenylethanoid glycosides [acteoside (4), isoacteoside (5), arenarioside (8), and leucosceptoside A (9)] and three flavones [desmethoxycentaureidin (10), eupafolin (11), and 6-hydroxyluteolin (12)] from the latter. Antiproliferative activity of the isolated compounds against murine melanoma (B16F10), human gastric adenocarcinoma (MK-1), and human uterine carcinoma (HeLa) cells was estimated. (+)-Anymol (3), acteoside (4), isoacteoside (5), arenarioside (8), eupafolin (11), and 6-hydroxyluteolin (12) had GI50 values of 10-16 microM against B16F10 cell. Desmethoxycentaureidin (10) and eupafolin (11) showed high inhibitory activity against HeLa cell growth (GI50 9 microM, and 6 microM, respectively).  (+info)

Studies on the antioxidant activity of Lippia citriodora infusion: scavenging effect on superoxide radical, hydroxyl radical and hypochlorous acid. (2/36)

Lippia citriodora is an herbal species which contains several flavonoids and phenolic acids. In view of the pharmacological interest in natural phenolic compounds as antioxidants, this study examined the superoxide radical, hydroxyl radical and hypochlorous acid scavenging activities of L. citriodora infusion. Superoxide radical was generated either in an enzymatic or in a chemical system, and scavenging ability was assessed by the inhibition of nitroblue tetrazolium reduction. Hydroxyl radical was generated by the reaction of an iron-EDTA complex with H2O2 in the presence of ascorbic acid, and was assayed by evaluating deoxyribose degradation. Hypochlorous acid scavenging activity was tested by measuring the inhibition of 5-thio-2-nitrobenzoic acid oxidation. The results demonstrate that this infusion has a potent superoxide radical scavenging activity and a moderate scavenging activity of hydroxyl radical and hypochlorous acid. The chemical composition of the lyophilized infusion was also determined in an attempt to establish its relationship with the antioxidant activity found in the present study.  (+info)

Larvicidal activity of the essential oil from Lippia sidoides Cham. Against Aedes aegypti linn. (3/36)

The aim of this work was to study the larvicidal activity of Lippia sidoides essential oil against Aedes aegypti larvae. The essential oil and its hydrolate (saturated solution of essential oil in water) were obtained by vapor extraction and their chemical composition determined by GL-chromatography coupled to mass spectroscopy. Bioassays were run with the essential oil, pure and diluted hydrolate and with their main constituents thymol and carvacrol. The results obtained showed that L. sidoides essential oil and its hydrolate have larvicidal action against the mosquito A. aegypti, causing an almost instantaneous mortality. Thymol, an alkylated phenol derivative and one of the major components of L. sidoides essential oil, was identified as the active principle responsible for the larvicidal action, causing 100% larval mortality at the lowest tested concentration of 0.017% (w/v). These results suggest that the essential oil of L. sidoides is promising as larvicide against A. aegypti and could be useful in the search of newer, more selective, and biodegradable larvicidal natural compounds to be used in official combat programs and at home.  (+info)

New Bisabolane-Type Sesquiterpenes from the Aerial Parts of Lippia dulcis. (4/36)

Two new bisabolane-type sesquiterpenes, lippidulcine A (3) and epilippidulcine A (4), have been isolated from the aerial parts of Lippia dulcis TREV. along with five known flavonoids, cirsimaritin (5), salvigenin (6), eupatorin (7), 5-hydroxy-6,7,3',4'-tetramethoxyflavone (8) and 5,3'-dihydroxy-6,7,4',5'-tetramethoxyflavone (9), three known phenylethanoid glycosides, decaffeoylverbascoside (10), acteoside (11) and isoacteoside (12), and two known iridoid glucosides, 8-epiloganin (13) and lamiide (14). Their chemical structures have been determined on the basis of spectroscopic data. Among them, 5, 7, and 9 exhibited almost the same activity as that of alpha-tocopherol, and 10-12 were identified as stronger antioxidants than alpha-tocopherol using the ferric thiocyanate method.  (+info)

Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. (5/36)

Dental caries and periodontal disease are associated with oral pathogens. Several plant derivatives have been evaluated with respect to their antimicrobial effects against such pathogenic microorganisms. Lippia sidoides Cham (Verbenaceae), popularly known as "Alecrim-pimenta" is a typical shrub commonly found in the Northeast of Brazil. Many plant species belonging to the genus Lippia yield very fragrant essential oils of potential economic value which are used by the industry for the commercial production of perfumes, creams, lotions, and deodorants. Since the leaves of L. sidoides are also extensively used in popular medicine for the treatment of skin wounds and cuts, the objective of the present study was to evaluate the composition and antimicrobial activity of L. sidoides essential oil. The essential oil was obtained by hydro-distillation and analyzed by GC-MS. Twelve compounds were characterized, having as major constituents thymol (56.7%) and carvacrol (16.7%). The antimicrobial activity of the oil and the major components was tested against cariogenic bacterial species of the genus Streptococcus as well as Candida albicans using the broth dilution and disk diffusion assays. The essential oil and its major components thymol and carvacrol exhibited potent antimicrobial activity against the organisms tested with minimum inhibitory concentrations ranging from 0.625 to 10.0 mg/mL. The most sensitive microorganisms were C. albicans and Streptococcus mutans. The essential oil of L. sidoides and its major components exert promising antimicrobial effects against oral pathogens and suggest its likely usefulness to combat oral microbial growth.  (+info)

Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. (6/36)

OBJECTIVES: The aims of this study were to test the essential oil from Lippia sidoides Cham. for antifungal activity, in vitro, against Candida spp. and Microsporum canis, to evaluate its acute and subchronic toxicological effects, in vivo, and to determine its chemical constituents. METHODS: The antifungal activity, in vitro, was initially evaluated by the agar-well diffusion technique, and the MIC and minimum fungicidal concentration (MFC) were determined by the broth microdilution method. The acute and subchronic toxicological effects were determined in mice and rats, respectively. The chemical composition of the essential oil was determined by gas chromatography coupled to mass spectroscopy. RESULTS: The essential oil obtained from L. sidoides was effective against all tested strains by the agar-well diffusion method. The MICs of L. sidoides essential oil for strains of M. canis ranged from 4 to 70 mg/L and the MFCs ranged from 9 to 150 mg/L. The MICs for strains of Candida spp. ranged from 620 to 2500 mg/L and the MFCs ranged from 1250 to 5000 mg/L. The main constituents of L. sidoides essential oil were thymol (59.65%), E-caryophyllene (10.60%) and p-cymene (9.08%). The acute administration of the essential oil up to 3 g/kg by the oral route to mice was devoid of overt toxicity. The 30 day oral administration of L. sidoides oil (117.95 mg/kg/day) to rats did not induce any significant histopathological, haematological or serum biochemical alterations. CONCLUSIONS: The essential oil from L. sidoides may be a promising source in the search for new antifungal drugs due to its efficacy and low toxicity.  (+info)

Morphology and histochemistry of the glandular trichomes of Lippia scaberrima (Verbenaceae). (7/36)

BACKGROUND AND AIMS: Lippia scaberrima, an aromatic indigenous South African plant, with medicinal application, potentially has economic value. The production of essential oil from this plant has not been optimized, and this study of the chemico-morphological characteristics was aimed at determining the location of oil production within the plant. Furthermore, the locality of other secondary metabolites important in medicinal applications needed to be ascertained. This information would be useful in deciding the protocol required for isolation of such compounds. METHODS: The morphology of the glandular trichomes was investigated using a combination of scanning electron and light microscopy. Concurrently, the chemical content was studied by applying various chemical reagents and fluorescence microscopy. KEY RESULTS: Three types of trichomes were distinguished on the material investigated. Large, bulbous peltate glands containing compounds of terpenoid nature are probably the main site of essential oil accumulation. Small glands were found to be both peltate and capitate and fluorescent stain indicated the possible presence of phenolic compounds. The third type was a slender tapered seta with an ornamented surface and uniseriate base, and evidently secretory in nature. CONCLUSIONS: This study linking the chemical content and morphology of the glandular trichomes of L. scaberrima has contributed to the knowledge and understanding of secretory structures of Lippia spp. in general.  (+info)

Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. (8/36)

 (+info)